Antecedents of Satisfaction and Use of Mobile Learning in Higher Education

Authors

DOI:

https://doi.org/10.5020/2318-0722.2024.30.e14606

Keywords:

higher education, mobile learning, the Covid-19 pandemic, remote teaching, information and communication technologies

Abstract

The migration to emergency remote teaching has forced universities to adapt their teaching methodologies with the help of tools such as remote teaching, which has become a significant component of higher education technology. Additionally, higher education has enabled students to study, collaborate, and exchange ideas using the internet, technology, and mobile devices. Thus, this study analyzed which factors positively impacted satisfaction with mobile learning during the COVID-19 pandemic and which factors positively impacted the intention to use such devices in the future. Using research based on the Unified Theory of Acceptance and Use of Technology, data were collected from 498 undergraduate students at the State University of Campinas, Brazil, and analyzed using partial least squares structural equation modeling. In terms of intention to use, the results reveal that the most influential constructs are performance expectation, price, and hedonic motivations, while effort expectation, social influence, and facilitating conditions did not present a significant impact. Concerning the level of satisfaction, the constructs that have the most influence are hedonic motivations, performance expectation, effort expectation, price, and social influence. Only facilitating conditions did not show a significant impact on satisfaction. The results provided important information for improving the learning environment, teaching methods, curriculum formulation, and educational policy development. Furthermore, they contribute to Sustainable Development Goal 4 – Quality Education, by promoting new learning opportunities.

Methodology: The research is based on the Unified Technology Acceptance and Use Theory. Data were collected from 498 undergraduate students from the State University of Campinas, Brazil, and analyzed with the application of the Partial Least Squares Structural Equation Modeling.

Findings: The results in terms of Intention of Use reveals the most influential constructs are: Performance Expectation, Price and Hedonic Motivations, while Expectation of Effort, Social Influence and Facilitating Conditions did not show significant influence. On the other hand, in terms of Satisfaction, the constructs that most influence are: Hedonic Motivations, Performance Expectation, Effort Expectation, Price and Social Influence. Only Facilitating Conditions showed no significant influence on Satisfaction.

Conclusions: The results provided important insights for improving the learning environment, teaching methods, curriculum formulation, and educational policy development, highlighting how to increase students' satisfaction and intention to use m-learning. In addition, they contribute to Sustainable Development Goal 4 – Quality Education, by promoting new learning opportunities.

Downloads

Download data is not yet available.

Author Biographies

Gustavo Hermínio Salati Marcondes de Moraes, Universidade Estadual de Campinas, Limeira, São Paulo, Brasil

Professor da área de Administração da Universidade Estadual de Campinas (UNICAMP). Possui Doutorado (2013) e Mestrado (2010) em Administração (Fundação Getúlio Vargas). É Professor Associado da Faculdade de Ciências Aplicadas (FCA) da UNICAMP desde 2015. Atua como Coordenador do Programa de Pós-Graduação em Administração desde 2021. Atua em grupos de pesquisa com foco em: Ecossistema Empreendedor, Empreendedorismo Sustentável, Tecnologia da Informação e Inteligência Analítica.

Nágela Bianca do Prado, Universidade Estadual de Campinas, Limeira, São Paulo, Brasil

Doutoranda em Administração pela Faculdade de Ciências Aplicadas (FCA) da Universidade Estadual de Campinas (UNICAMP). Possui Mestrado em Administração de Empresas pela mesma faculdade (FCA/UNICAMP, 2021) e especialização em Gestão Estratégica de Pessoas (FCA/UNICAMP, 2019). Tem interesse em pesquisas envolvendo o tema Sustentabilidade, com ênfase em Empreendedorismo, Governança Empresarial e Tecnologias Sociais.

Rosiane Petto de Campos, MUST University, Deerfield Beach, Florida, Estados Unidos da América

Mestranda em Administração pela Must University, Estados Unidos. Graduanda em Letras - Português pela Universidade Federal do Pampa Campus Jaguarão. Graduada em Administração pela Universidade Estadual de Campinas, São Paulo.

Gustavo Tietz Cazeri, Universidade Estadual de Campinas, Limeira, São Paulo, Brasil

Doutorado em Engenharia Mecânica pela Universidade Estadual de Campinas (UNICAMP). É Mestre em Engenharia Mecânica pela UNICAMP. Possui Pós-Graduação lato sensu (MBA) em Gestão Empresarial pela Fundação Getúlio Vargas (FGV) e graduação em Engenharia Mecânica pela Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP).

Rosley Anholon, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil

Engenheiro Mecânico (2001), Mestre (2003), Doutor em Engenharia de Materiais e Processos de Fabricação (2006) e Livre-Docente (2019) pela Universidade Estadual de Campinas (UNICAMP). É docente do Departamento de Engenharia de Manufatura e Materiais da Faculdade de Engenharia Mecânica da UNICAMP.

References

Abdelwahed, N. A. A., & Soomro, B. A. (2023). Attitudes and intentions towards the adoption of mobile learning during COVID-19: Building an exciting career through vocational education. Education and Training, 65(2), 210–231. https://doi.org/10.1108/ET-02-2022-0048

Ahmed, S. A. M., Suliman, M. A. E., AL-Qadri, A. H., & Zhang, W. (2024). Exploring the intention to use mobile learning applications among international students for Chinese language learning during the COVID-19 pandemic. Journal of Applied Research in Higher Education, 16(4), 1093–1116. https://doi.org/10.1108/JARHE-01-2023-0012

Alalwan, A. A. (2020). Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. International Journal of Information Management, 50, 28–44. https://doi.org/10.1016/j.ijinfomgt.2019.04.008

Alanya-Beltran, J., & Panduro-Ramirez, J. (2021). Mobile Learning in Business English its Effect to South American Students’ Learning Styles in the COVID 19 Pandemic Era: Its Economic Implications. Studies of Applied Economics, 39(12), 1-14. https://doi.org/10.25115/eea.v39i12.6394

Aldholay, A. H., Abdullah, Z., Ramayah, T., Isaac, O., & Mutahar, A. M. (2018). Online learning usage and performance among students within public universities in Yemen. International Journal of Services and Standards, 12(2), 163-179. https://doi.org/10.1504/IJSS.2018.10012964

Ali, Q., Abbas, A., Raza, A., Khan, M. T. I., Zulfiqar, H., Iqbal, M. A., Nayak, R. K., & Alotaibi, B. A. (2023). Exploring the Students’ Perceived Effectiveness of Online Education during the COVID-19 Pandemic: Empirical Analysis Using Structural Equation Modeling (SEM). Behavioral Sciences, 13(7), 578-591. https://doi.org/10.3390/bs13070578

Alismaiel, O. A., Cifuentes-Faura, J., & Al-Rahmi, W. M. (2022). Online Learning, Mobile Learning, and Social Media Technologies: An Empirical Study on Constructivism Theory during the COVID-19 Pandemic. Sustainability, 14(18), 1-15. https://doi.org/10.3390/su141811134

Almaiah, M. A., Ayouni, S., Hajjej, F., Lutfi, A., Almomani, O., & Awad, A. B. (2022). Smart Mobile Learning Success Model for Higher Educational Institutions in the Context of the COVID-19 Pandemic. Electronics, 11(8), 1–13. https://doi.org/10.3390/electronics11081278

Al-Qora’n, L. F., Al-odat, A. M., Al-jaghoub, S., & Al-Yaseen, H. (2023). State of the Art of Mobile Learning in Jordanian Higher Education: An Empirical Study. Multimodal Technologies and Interaction, 7(4), 1-19. https://doi.org/10.3390/mti7040041

Al-Rahmi, A. M., Al-Rahmi, W. M., Alturki, U., Aldraiweesh, A., Almutairy, S., & Al-Adwan, A. S. (2022). Acceptance of mobile technologies and M-learning by university students: An empirical investigation in higher education. Education and Information Technologies, 27(6), 7805–7826. https://doi.org/10.1007/s10639-022-10934-8

Alsswey, A., & Al-Samarraie, H. (2019). M-learning adoption in the Arab gulf countries: A systematic review of factors and challenges. Education and Information Technologies, 24(5), 3163–3176. https://doi.org/10.1007/s10639-019-09923-1

Alturki, U., & Aldraiweesh, A. (2022). Students’ Perceptions of the Actual Use of Mobile Learning during COVID-19 Pandemic in Higher Education. Sustainability, 14(3), 1-17. https://doi.org/10.3390/su14031125

Alzaidi, M. S., & Shehawy, Y. M. (2022). Cross-national differences in mobile learning adoption during COVID-19. Education and Training, 64(3), 305–328. https://doi.org/10.1108/ET-05-2021-0179

Braga, J. de C. F., & Martins, A. C. S. (2020). When Teacher Education Goes Mobile: A Study on Complex Emergence. Revista Brasileira de Linguística Aplicada, 20(2), 353–381. https://doi.org/10.1590/1984-6398201914819

Buarque, B., Santos, A. C. B. dos, Lucena, N. F. de, Magalhães, R. C., & Machado, H. O. (2021). O Papel das Redes e da Capacidade de Conversão de Conhecimento no Desenvolvimento de Spin-Offs Acadêmicas. Revista Ciências Administrativas, 27(3),1-14. https://doi.org/10.5020/2318-0722.2021.27.3.11811

Chen, Y., Zheng, B., Zhang, Z., Wang, Q., Shen, C., & Zhang, Q. (2020). Deep Learning on Mobile and Embedded Devices. ACM Computing Surveys, 53(4), 1–37. https://doi.org/10.1145/3398209

Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences. Routledge. https://doi.org/10.4324/9780203771587

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

DeLone, W. H., & McLean, E. R. (2016). Information Systems Success Measurement. Foundations and Trends® in Information Systems, 2(1), 1–116. https://doi.org/10.1561/2900000005

Dias, D. D. S. F., & Ramalho, B. L. (2021). Mobile Learning no Ensino de Didática: caminhos na pandemia. Informática Na Educação: Teoria & Prática, 24(2), 66-76. https://doi.org/10.22456/1982-1654.110831

Santos, V. M. dos, Cernev, A. K., Saraiva, G. M. M., & Bida, A. G. (2022). Faculty experience and digital platforms in education. Revista de Gestão, 29(3), 252–266. https://doi.org/10.1108/REGE-05-2021-0090

Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312

Garzón, J., & Lampropoulos, G. (2023). Mobile learning for science education: Meta-analysis of K-12 research. Interactive Learning Environments, 1–16. https://doi.org/10.1080/10494820.2023.2280973

Gunter, G. A., & Braga, J. de C. F. (2018). Connecting, swiping, and integrating: Mobile apps affordances and innovation adoption in teacher education and practice. Educação em Revista, 34, 1-22. https://doi.org/10.1590/0102-4698189927

Hair, J. F., Jr, Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203

Hair, J. F., Jr, Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced Issues in Partial Least Squares Structural Equation Modeling. SAGE Publications.

Hair, J. F., Jr, Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009). Análise multivariada de dados (6th ed.). Bookman.

Hong, W., Thong, J. Y. L., Chasalow, L. C., & Dhillon, G. (2011). User Acceptance of Agile Information Systems: A Model and Empirical Test. Journal of Management Information Systems, 28(1), 235–272. https://doi.org/10.2753/MIS0742-1222280108

Khan, R. M. I., Ali, A., & Alouraini, A. (2022). Mobile Learning in Education: Inevitable Substitute during COVID-19 Era. SAGE Open, 12(4), 1–10. https://doi.org/10.1177/21582440221132503

Kim, J. (2020). Voices of youth in reconceptualising and repositioning the role of mobile learning for sustainable development. Information Technology for Development, 26(4), 711–727. https://doi.org/10.1080/02681102.2020.1749537

Klimova, B. (2019). Impact of Mobile Learning on Students’ Achievement Results. Education Sciences, 9(2), 90-98. https://doi.org/10.3390/educsci9020090

Li, Z., Islam, A. Y. M. A., & Spector, J. M. (2023). Unpacking Mobile Learning in Higher Vocational Education During the COVID-19 Pandemic. International Journal of Mobile Communications, 20(2), 129-149. https://doi.org/10.1504/ijmc.2023.10042533

Lima, T. V. de, Freitas, A. S. de, Ferreira, J. B., & Filardi, F. (2018). O M-Learning como Apoio ao Ensino em Administração. Revista de Administração FACES Journal, 17(3), 28–47.

Maiden, N. (2008). User Requirements and System Requirements. IEEE Software, 25(2), 90–91. https://doi.org/10.1109/MS.2008.54

Marinković, V., Đorđević, A., & Kalinić, Z. (2020). The moderating effects of gender on customer satisfaction and continuance intention in mobile commerce: A UTAUT-based perspective. Technology Analysis & Strategic Management, 32(3), 306–318. https://doi.org/10.1080/09537325.2019.1655537

Marinković, V., & Kalinic, Z. (2017). Antecedents of customer satisfaction in mobile commerce: Exploring the moderating effect of customization. Online Information Review, 41(2), 138–154. https://doi.org/10.1108/OIR-11-2015-0364

Pebriantika, L., Wibawa, B., & Paristiowati, M. (2021). Adoption of Mobile Learning: The Influence And Opportunities For Learning During The Covid-19 Pandemic. International Journal of Interactive Mobile Technologies, 15(5), 222-229. https://doi.org/10.3991/ijim.v15i05.21067

Pires, A. (2021). Covid 19 y la educación superior en Brasil: Usos diferenciados de las tecnologías de la comunicación virtual y las desigualdades educativas. Educación, 30(58), 1-21. https://doi.org/10.18800/educacion.202101.004

Qamar, Md. T., Ajmal, M., Malik, A., Ahmad, J. J., & Yasmeen, J. (2023). Mobile learning determinants that influence Indian university students’ learning satisfaction during the COVID-19 pandemic. International Journal of Continuing Engineering Education and Life-Long Learning, 33(2/3), 1-30. https://doi.org/10.1504/IJCEELL.2023.129212

Romero-Rodríguez, J-M., Aznar-Díaz, I., Hinojo-Lucena, F-J., & Cáceres-Reche, M-P. (2020). Models of good teaching practices for mobile learning in higher education. Palgrave Communications, 6(80), 1-7. https://doi.org/10.1057/s41599-020-0468-6

Saikat, S., Dhillon, J. S., Ahmad, W. F. W., & Jamaluddin, R. A. (2021). A systematic review of the benefits and challenges of mobile learning during the covid-19 pandemic. Education Sciences, 11(9), 1-14. https://doi.org/10.3390/educsci11090459

Sigahi, T. F. A. C., Sznelwar, L. I., Rampasso, I. S., Moraes, G. H. S. M. de, Girotto, G., Jr., Pinto, A., Jr., & Anholon, R. (2022). Proposal of guidelines to assist managers to face pressing challenges confronting Latin American universities: A complexity theory perspective. Ergonomics, 66(9), 1–16. https://doi.org/10.1080/00140139.2022.2126895

Singha, C., & Mohapatra, R. L. (2023, November 15-17). Student Satisfaction on Online Learning During Covid-19 Using Machine Learning Techniques. [Conference presentation abstract]. International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India. https://doi.org/10.1109/ICSCNA58489.2023.10370345

Thanh, L. P., Trang, T. N. Q., Minh, N. N., & Van Hai, H. (2024). Key Determinants of Student Satisfaction in Online Learning During COVID-19: Evidence From Vietnamese Students. Human Behavior and Emerging Technologies, 2024(1), 1–14. https://doi.org/10.1155/2024/5560967

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412

Voicu, M. C., & Muntean, M. (2023). Factors That Influence Mobile Learning among University Students in Romania. Electronics, 12(4), 1-18. https://doi.org/10.3390/electronics12040938

Wairiya, M., Sahu, G. P., & Tyagi, N. (2022, January 27-28). Identifying Critical Success Factor for Effective Adoption of Mobile Learning Application: An Empirical Study in Indian Context. [Conference-presentation abstract]. Twelfth International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India. https://doi.org/10.1109/Confluence52989.2022.9734229

Yalcinkaya, T., & Yucel, S. C. (2023). Determination of nursing students’ attitudes toward and readiness for mobile learning: A cross-sectional study. Nurse Education Today, 120, 1-6. https://doi.org/10.1016/j.nedt.2022.105652

Yuan, Y-P., Tan, G. W-H., Ooi, K-B., & Lim, W-L. (2021). Can COVID-19 pandemic influence experience response in mobile learning? Telematics and Informatics, 64, 1-14. https://doi.org/10.1016/j.tele.2021.101676

Zaidi, S. F. H., Osmanaj, V., Ali, O., & Zaidi, S. A. H. (2021). Adoption of mobile technology for mobile learning by university students during COVID-19. International Journal of Information and Learning Technology, 38(4), 329–343. https://doi.org/10.1108/IJILT-02-2021-0033

Downloads

Published

2024-10-31

How to Cite

MORAES, G. H. S. M. de; PRADO, N. B. do; CAMPOS, R. P. de; CAZERI, G. T.; ANHOLON, R. Antecedents of Satisfaction and Use of Mobile Learning in Higher Education. Journal of Administrative Sciences, [S. l.], v. 30, p. 1–14, 2024. DOI: 10.5020/2318-0722.2024.30.e14606. Disponível em: https://ojs.unifor.br/rca/article/view/14606. Acesso em: 18 may. 2025.

Issue

Section

Artigos