Os Antecedentes da Satisfação e Uso da Aprendizagem Móvel no Ensino Superior
DOI:
https://doi.org/10.5020/2318-0722.2024.30.e14606Palavras-chave:
ensino superior, aprendizagem móvel, Pandemia da Covid-19, ensino remoto, tecnologias de informação e comunicaçãoResumo
A migração para o ensino remoto emergencial fez com que as universidades adaptassem suas metodologias de ensino com o auxílio de ferramentas, como o ensino remoto, que se tornou um componente significativo da tecnologia do ensino superior. Além disso, o ensino superior permitiu que os alunos estudassem, colaborassem e trocassem ideias enquanto usavam a internet, tecnologia e dispositivos móveis. Assim, este estudo analisou quais fatores impactaram positivamente a satisfação com o ensino móvel durante a pandemia da Covid-19, bem como quais fatores impactaram positivamente na intenção de usar tais dispositivos no futuro. Com uma pesquisa baseada na Teoria Unificada de Aceitação e Uso de Tecnologia, os dados foram coletados de 498 alunos de graduação da Universidade Estadual de Campinas, Brasil, e analisados com a aplicação da modelagem de equações estruturais por mínimos quadrados parciais. Os resultados, em termos de intenção de uso, revelam que os construtos mais influentes são: expectativa de desempenho, preço e motivações hedônicas; enquanto expectativa de esforço, influência social e condições facilitadoras não apresentaram influência significativa. Quanto ao nível da satisfação, os construtos que mais influenciam são: motivações hedônicas, expectativa de desempenho, expectativa de esforço, preço e influência social. Apenas as condições facilitadoras não apresentaram influência significativa na satisfação. Os resultados forneceram informações importantes para melhorar o ambiente de aprendizagem, métodos de ensino, formulação de currículo e desenvolvimento de políticas educacionais. Além disso, contribuem para o Objetivo de Desenvolvimento Sustentável 4 – Educação de Qualidade, ao promover novas oportunidades de aprendizagem.
Downloads
Referências
Abdelwahed, N. A. A., & Soomro, B. A. (2023). Attitudes and intentions towards the adoption of mobile learning during COVID-19: Building an exciting career through vocational education. Education and Training, 65(2), 210–231. https://doi.org/10.1108/ET-02-2022-0048
Ahmed, S. A. M., Suliman, M. A. E., AL-Qadri, A. H., & Zhang, W. (2024). Exploring the intention to use mobile learning applications among international students for Chinese language learning during the COVID-19 pandemic. Journal of Applied Research in Higher Education, 16(4), 1093–1116. https://doi.org/10.1108/JARHE-01-2023-0012
Alalwan, A. A. (2020). Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. International Journal of Information Management, 50, 28–44. https://doi.org/10.1016/j.ijinfomgt.2019.04.008
Alanya-Beltran, J., & Panduro-Ramirez, J. (2021). Mobile Learning in Business English its Effect to South American Students’ Learning Styles in the COVID 19 Pandemic Era: Its Economic Implications. Studies of Applied Economics, 39(12), 1-14. https://doi.org/10.25115/eea.v39i12.6394
Aldholay, A. H., Abdullah, Z., Ramayah, T., Isaac, O., & Mutahar, A. M. (2018). Online learning usage and performance among students within public universities in Yemen. International Journal of Services and Standards, 12(2), 163-179. https://doi.org/10.1504/IJSS.2018.10012964
Ali, Q., Abbas, A., Raza, A., Khan, M. T. I., Zulfiqar, H., Iqbal, M. A., Nayak, R. K., & Alotaibi, B. A. (2023). Exploring the Students’ Perceived Effectiveness of Online Education during the COVID-19 Pandemic: Empirical Analysis Using Structural Equation Modeling (SEM). Behavioral Sciences, 13(7), 578-591. https://doi.org/10.3390/bs13070578
Alismaiel, O. A., Cifuentes-Faura, J., & Al-Rahmi, W. M. (2022). Online Learning, Mobile Learning, and Social Media Technologies: An Empirical Study on Constructivism Theory during the COVID-19 Pandemic. Sustainability, 14(18), 1-15. https://doi.org/10.3390/su141811134
Almaiah, M. A., Ayouni, S., Hajjej, F., Lutfi, A., Almomani, O., & Awad, A. B. (2022). Smart Mobile Learning Success Model for Higher Educational Institutions in the Context of the COVID-19 Pandemic. Electronics, 11(8), 1–13. https://doi.org/10.3390/electronics11081278
Al-Qora’n, L. F., Al-odat, A. M., Al-jaghoub, S., & Al-Yaseen, H. (2023). State of the Art of Mobile Learning in Jordanian Higher Education: An Empirical Study. Multimodal Technologies and Interaction, 7(4), 1-19. https://doi.org/10.3390/mti7040041
Al-Rahmi, A. M., Al-Rahmi, W. M., Alturki, U., Aldraiweesh, A., Almutairy, S., & Al-Adwan, A. S. (2022). Acceptance of mobile technologies and M-learning by university students: An empirical investigation in higher education. Education and Information Technologies, 27(6), 7805–7826. https://doi.org/10.1007/s10639-022-10934-8
Alsswey, A., & Al-Samarraie, H. (2019). M-learning adoption in the Arab gulf countries: A systematic review of factors and challenges. Education and Information Technologies, 24(5), 3163–3176. https://doi.org/10.1007/s10639-019-09923-1
Alturki, U., & Aldraiweesh, A. (2022). Students’ Perceptions of the Actual Use of Mobile Learning during COVID-19 Pandemic in Higher Education. Sustainability, 14(3), 1-17. https://doi.org/10.3390/su14031125
Alzaidi, M. S., & Shehawy, Y. M. (2022). Cross-national differences in mobile learning adoption during COVID-19. Education and Training, 64(3), 305–328. https://doi.org/10.1108/ET-05-2021-0179
Braga, J. de C. F., & Martins, A. C. S. (2020). When Teacher Education Goes Mobile: A Study on Complex Emergence. Revista Brasileira de Linguística Aplicada, 20(2), 353–381. https://doi.org/10.1590/1984-6398201914819
Buarque, B., Santos, A. C. B. dos, Lucena, N. F. de, Magalhães, R. C., & Machado, H. O. (2021). O Papel das Redes e da Capacidade de Conversão de Conhecimento no Desenvolvimento de Spin-Offs Acadêmicas. Revista Ciências Administrativas, 27(3),1-14. https://doi.org/10.5020/2318-0722.2021.27.3.11811
Chen, Y., Zheng, B., Zhang, Z., Wang, Q., Shen, C., & Zhang, Q. (2020). Deep Learning on Mobile and Embedded Devices. ACM Computing Surveys, 53(4), 1–37. https://doi.org/10.1145/3398209
Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences. Routledge. https://doi.org/10.4324/9780203771587
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
DeLone, W. H., & McLean, E. R. (2016). Information Systems Success Measurement. Foundations and Trends® in Information Systems, 2(1), 1–116. https://doi.org/10.1561/2900000005
Dias, D. D. S. F., & Ramalho, B. L. (2021). Mobile Learning no Ensino de Didática: caminhos na pandemia. Informática Na Educação: Teoria & Prática, 24(2), 66-76. https://doi.org/10.22456/1982-1654.110831
Santos, V. M. dos, Cernev, A. K., Saraiva, G. M. M., & Bida, A. G. (2022). Faculty experience and digital platforms in education. Revista de Gestão, 29(3), 252–266. https://doi.org/10.1108/REGE-05-2021-0090
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149
Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312
Garzón, J., & Lampropoulos, G. (2023). Mobile learning for science education: Meta-analysis of K-12 research. Interactive Learning Environments, 1–16. https://doi.org/10.1080/10494820.2023.2280973
Gunter, G. A., & Braga, J. de C. F. (2018). Connecting, swiping, and integrating: Mobile apps affordances and innovation adoption in teacher education and practice. Educação em Revista, 34, 1-22. https://doi.org/10.1590/0102-4698189927
Hair, J. F., Jr, Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
Hair, J. F., Jr, Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced Issues in Partial Least Squares Structural Equation Modeling. SAGE Publications.
Hair, J. F., Jr, Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009). Análise multivariada de dados (6th ed.). Bookman.
Hong, W., Thong, J. Y. L., Chasalow, L. C., & Dhillon, G. (2011). User Acceptance of Agile Information Systems: A Model and Empirical Test. Journal of Management Information Systems, 28(1), 235–272. https://doi.org/10.2753/MIS0742-1222280108
Khan, R. M. I., Ali, A., & Alouraini, A. (2022). Mobile Learning in Education: Inevitable Substitute during COVID-19 Era. SAGE Open, 12(4), 1–10. https://doi.org/10.1177/21582440221132503
Kim, J. (2020). Voices of youth in reconceptualising and repositioning the role of mobile learning for sustainable development. Information Technology for Development, 26(4), 711–727. https://doi.org/10.1080/02681102.2020.1749537
Klimova, B. (2019). Impact of Mobile Learning on Students’ Achievement Results. Education Sciences, 9(2), 90-98. https://doi.org/10.3390/educsci9020090
Li, Z., Islam, A. Y. M. A., & Spector, J. M. (2023). Unpacking Mobile Learning in Higher Vocational Education During the COVID-19 Pandemic. International Journal of Mobile Communications, 20(2), 129-149. https://doi.org/10.1504/ijmc.2023.10042533
Lima, T. V. de, Freitas, A. S. de, Ferreira, J. B., & Filardi, F. (2018). O M-Learning como Apoio ao Ensino em Administração. Revista de Administração FACES Journal, 17(3), 28–47.
Maiden, N. (2008). User Requirements and System Requirements. IEEE Software, 25(2), 90–91. https://doi.org/10.1109/MS.2008.54
Marinković, V., Đorđević, A., & Kalinić, Z. (2020). The moderating effects of gender on customer satisfaction and continuance intention in mobile commerce: A UTAUT-based perspective. Technology Analysis & Strategic Management, 32(3), 306–318. https://doi.org/10.1080/09537325.2019.1655537
Marinković, V., & Kalinic, Z. (2017). Antecedents of customer satisfaction in mobile commerce: Exploring the moderating effect of customization. Online Information Review, 41(2), 138–154. https://doi.org/10.1108/OIR-11-2015-0364
Pebriantika, L., Wibawa, B., & Paristiowati, M. (2021). Adoption of Mobile Learning: The Influence And Opportunities For Learning During The Covid-19 Pandemic. International Journal of Interactive Mobile Technologies, 15(5), 222-229. https://doi.org/10.3991/ijim.v15i05.21067
Pires, A. (2021). Covid 19 y la educación superior en Brasil: Usos diferenciados de las tecnologías de la comunicación virtual y las desigualdades educativas. Educación, 30(58), 1-21. https://doi.org/10.18800/educacion.202101.004
Qamar, Md. T., Ajmal, M., Malik, A., Ahmad, J. J., & Yasmeen, J. (2023). Mobile learning determinants that influence Indian university students’ learning satisfaction during the COVID-19 pandemic. International Journal of Continuing Engineering Education and Life-Long Learning, 33(2/3), 1-30. https://doi.org/10.1504/IJCEELL.2023.129212
Romero-Rodríguez, J-M., Aznar-Díaz, I., Hinojo-Lucena, F-J., & Cáceres-Reche, M-P. (2020). Models of good teaching practices for mobile learning in higher education. Palgrave Communications, 6(80), 1-7. https://doi.org/10.1057/s41599-020-0468-6
Saikat, S., Dhillon, J. S., Ahmad, W. F. W., & Jamaluddin, R. A. (2021). A systematic review of the benefits and challenges of mobile learning during the covid-19 pandemic. Education Sciences, 11(9), 1-14. https://doi.org/10.3390/educsci11090459
Sigahi, T. F. A. C., Sznelwar, L. I., Rampasso, I. S., Moraes, G. H. S. M. de, Girotto, G., Jr., Pinto, A., Jr., & Anholon, R. (2022). Proposal of guidelines to assist managers to face pressing challenges confronting Latin American universities: A complexity theory perspective. Ergonomics, 66(9), 1–16. https://doi.org/10.1080/00140139.2022.2126895
Singha, C., & Mohapatra, R. L. (2023, November 15-17). Student Satisfaction on Online Learning During Covid-19 Using Machine Learning Techniques. [Conference presentation abstract]. International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India. https://doi.org/10.1109/ICSCNA58489.2023.10370345
Thanh, L. P., Trang, T. N. Q., Minh, N. N., & Van Hai, H. (2024). Key Determinants of Student Satisfaction in Online Learning During COVID-19: Evidence From Vietnamese Students. Human Behavior and Emerging Technologies, 2024(1), 1–14. https://doi.org/10.1155/2024/5560967
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
Voicu, M. C., & Muntean, M. (2023). Factors That Influence Mobile Learning among University Students in Romania. Electronics, 12(4), 1-18. https://doi.org/10.3390/electronics12040938
Wairiya, M., Sahu, G. P., & Tyagi, N. (2022, January 27-28). Identifying Critical Success Factor for Effective Adoption of Mobile Learning Application: An Empirical Study in Indian Context. [Conference-presentation abstract]. Twelfth International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India. https://doi.org/10.1109/Confluence52989.2022.9734229
Yalcinkaya, T., & Yucel, S. C. (2023). Determination of nursing students’ attitudes toward and readiness for mobile learning: A cross-sectional study. Nurse Education Today, 120, 1-6. https://doi.org/10.1016/j.nedt.2022.105652
Yuan, Y-P., Tan, G. W-H., Ooi, K-B., & Lim, W-L. (2021). Can COVID-19 pandemic influence experience response in mobile learning? Telematics and Informatics, 64, 1-14. https://doi.org/10.1016/j.tele.2021.101676
Zaidi, S. F. H., Osmanaj, V., Ali, O., & Zaidi, S. A. H. (2021). Adoption of mobile technology for mobile learning by university students during COVID-19. International Journal of Information and Learning Technology, 38(4), 329–343. https://doi.org/10.1108/IJILT-02-2021-0033
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Gustavo Moraes, Nágela Bianca do Prado, Rosiane Petto de Campos, Gustavo Tietz Cazeri, Rosley Anholon

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Para publicação de trabalhos, os autores deverão assinar a Carta de Direitos Autorais, cujo modelo será enviado aos autores por e-mail, reservando os direitos, até mesmo de tradução, à RCA.
Para os textos que apresentam imagens (fotografias, retratos, obras de artes plásticas, desenhos fotografados, obras fotográficas em geral, mapas, figuras e outros), os autores devem encaminhar para a RCA carta original de autorização da empresa que detém a concessão e o direito de uso da imagem. A carta deve estar em papel timbrado e assinada pelo responsável da empresa, com autorização para o uso e a reprodução das imagens utilizadas no trabalho. O corpo da carta deve conter que a empresa é detentora dos direitos sobre as imagens e que dá direito de reprodução para a RCA. É importante salientar que os autores são responsáveis por eventuais problemas de direitos de reprodução das imagens que compõem o artigo.
A instituição e/ou qualquer dos organismos editoriais desta publicação NÃO SE RESPONSABILIZAM pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seus autores












