Os Antecedentes da Satisfação e Uso da Aprendizagem Móvel no Ensino Superior
DOI:
https://doi.org/10.5020/2318-0722.2024.30.e14606Palavras-chave:
ensino superior, aprendizagem móvel, Pandemia da Covid-19, ensino remoto, tecnologias de informação e comunicaçãoResumo
A migração para o ensino remoto emergencial fez com que as universidades adaptassem suas metodologias de ensino com o auxílio de ferramentas, como o ensino remoto, que se tornou um componente significativo da tecnologia do ensino superior. Além disso, o ensino superior permitiu que os alunos estudassem, colaborassem e trocassem ideias enquanto usavam a internet, tecnologia e dispositivos móveis. Assim, este estudo analisou quais fatores impactaram positivamente a satisfação com o ensino móvel durante a pandemia da Covid-19, bem como quais fatores impactaram positivamente na intenção de usar tais dispositivos no futuro. Com uma pesquisa baseada na Teoria Unificada de Aceitação e Uso de Tecnologia, os dados foram coletados de 498 alunos de graduação da Universidade Estadual de Campinas, Brasil, e analisados com a aplicação da modelagem de equações estruturais por mínimos quadrados parciais. Os resultados, em termos de intenção de uso, revelam que os construtos mais influentes são: expectativa de desempenho, preço e motivações hedônicas; enquanto expectativa de esforço, influência social e condições facilitadoras não apresentaram influência significativa. Quanto ao nível da satisfação, os construtos que mais influenciam são: motivações hedônicas, expectativa de desempenho, expectativa de esforço, preço e influência social. Apenas as condições facilitadoras não apresentaram influência significativa na satisfação. Os resultados forneceram informações importantes para melhorar o ambiente de aprendizagem, métodos de ensino, formulação de currículo e desenvolvimento de políticas educacionais. Além disso, contribuem para o Objetivo de Desenvolvimento Sustentável 4 – Educação de Qualidade, ao promover novas oportunidades de aprendizagem.
Downloads
Referências
Abdelwahed, N. A. A., & Soomro, B. A. (2023). Attitudes and intentions towards the adoption of mobile learning during COVID-19: Building an exciting career through vocational education. Education and Training, 65(2), 210–231. https://doi.org/10.1108/ET-02-2022-0048
Ahmed, S. A. M., Suliman, M. A. E., AL-Qadri, A. H., & Zhang, W. (2024). Exploring the intention to use mobile learning applications among international students for Chinese language learning during the COVID-19 pandemic. Journal of Applied Research in Higher Education, 16(4), 1093–1116. https://doi.org/10.1108/JARHE-01-2023-0012
Alalwan, A. A. (2020). Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. International Journal of Information Management, 50, 28–44. https://doi.org/10.1016/j.ijinfomgt.2019.04.008
Alanya-Beltran, J., & Panduro-Ramirez, J. (2021). Mobile Learning in Business English its Effect to South American Students’ Learning Styles in the COVID 19 Pandemic Era: Its Economic Implications. Studies of Applied Economics, 39(12), 1-14. https://doi.org/10.25115/eea.v39i12.6394
Aldholay, A. H., Abdullah, Z., Ramayah, T., Isaac, O., & Mutahar, A. M. (2018). Online learning usage and performance among students within public universities in Yemen. International Journal of Services and Standards, 12(2), 163-179. https://doi.org/10.1504/IJSS.2018.10012964
Ali, Q., Abbas, A., Raza, A., Khan, M. T. I., Zulfiqar, H., Iqbal, M. A., Nayak, R. K., & Alotaibi, B. A. (2023). Exploring the Students’ Perceived Effectiveness of Online Education during the COVID-19 Pandemic: Empirical Analysis Using Structural Equation Modeling (SEM). Behavioral Sciences, 13(7), 578-591. https://doi.org/10.3390/bs13070578
Alismaiel, O. A., Cifuentes-Faura, J., & Al-Rahmi, W. M. (2022). Online Learning, Mobile Learning, and Social Media Technologies: An Empirical Study on Constructivism Theory during the COVID-19 Pandemic. Sustainability, 14(18), 1-15. https://doi.org/10.3390/su141811134
Almaiah, M. A., Ayouni, S., Hajjej, F., Lutfi, A., Almomani, O., & Awad, A. B. (2022). Smart Mobile Learning Success Model for Higher Educational Institutions in the Context of the COVID-19 Pandemic. Electronics, 11(8), 1–13. https://doi.org/10.3390/electronics11081278
Al-Qora’n, L. F., Al-odat, A. M., Al-jaghoub, S., & Al-Yaseen, H. (2023). State of the Art of Mobile Learning in Jordanian Higher Education: An Empirical Study. Multimodal Technologies and Interaction, 7(4), 1-19. https://doi.org/10.3390/mti7040041
Al-Rahmi, A. M., Al-Rahmi, W. M., Alturki, U., Aldraiweesh, A., Almutairy, S., & Al-Adwan, A. S. (2022). Acceptance of mobile technologies and M-learning by university students: An empirical investigation in higher education. Education and Information Technologies, 27(6), 7805–7826. https://doi.org/10.1007/s10639-022-10934-8
Alsswey, A., & Al-Samarraie, H. (2019). M-learning adoption in the Arab gulf countries: A systematic review of factors and challenges. Education and Information Technologies, 24(5), 3163–3176. https://doi.org/10.1007/s10639-019-09923-1
Alturki, U., & Aldraiweesh, A. (2022). Students’ Perceptions of the Actual Use of Mobile Learning during COVID-19 Pandemic in Higher Education. Sustainability, 14(3), 1-17. https://doi.org/10.3390/su14031125
Alzaidi, M. S., & Shehawy, Y. M. (2022). Cross-national differences in mobile learning adoption during COVID-19. Education and Training, 64(3), 305–328. https://doi.org/10.1108/ET-05-2021-0179
Braga, J. de C. F., & Martins, A. C. S. (2020). When Teacher Education Goes Mobile: A Study on Complex Emergence. Revista Brasileira de Linguística Aplicada, 20(2), 353–381. https://doi.org/10.1590/1984-6398201914819
Buarque, B., Santos, A. C. B. dos, Lucena, N. F. de, Magalhães, R. C., & Machado, H. O. (2021). O Papel das Redes e da Capacidade de Conversão de Conhecimento no Desenvolvimento de Spin-Offs Acadêmicas. Revista Ciências Administrativas, 27(3),1-14. https://doi.org/10.5020/2318-0722.2021.27.3.11811
Chen, Y., Zheng, B., Zhang, Z., Wang, Q., Shen, C., & Zhang, Q. (2020). Deep Learning on Mobile and Embedded Devices. ACM Computing Surveys, 53(4), 1–37. https://doi.org/10.1145/3398209
Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences. Routledge. https://doi.org/10.4324/9780203771587
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
DeLone, W. H., & McLean, E. R. (2016). Information Systems Success Measurement. Foundations and Trends® in Information Systems, 2(1), 1–116. https://doi.org/10.1561/2900000005
Dias, D. D. S. F., & Ramalho, B. L. (2021). Mobile Learning no Ensino de Didática: caminhos na pandemia. Informática Na Educação: Teoria & Prática, 24(2), 66-76. https://doi.org/10.22456/1982-1654.110831
Santos, V. M. dos, Cernev, A. K., Saraiva, G. M. M., & Bida, A. G. (2022). Faculty experience and digital platforms in education. Revista de Gestão, 29(3), 252–266. https://doi.org/10.1108/REGE-05-2021-0090
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149
Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312
Garzón, J., & Lampropoulos, G. (2023). Mobile learning for science education: Meta-analysis of K-12 research. Interactive Learning Environments, 1–16. https://doi.org/10.1080/10494820.2023.2280973
Gunter, G. A., & Braga, J. de C. F. (2018). Connecting, swiping, and integrating: Mobile apps affordances and innovation adoption in teacher education and practice. Educação em Revista, 34, 1-22. https://doi.org/10.1590/0102-4698189927
Hair, J. F., Jr, Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
Hair, J. F., Jr, Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced Issues in Partial Least Squares Structural Equation Modeling. SAGE Publications.
Hair, J. F., Jr, Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009). Análise multivariada de dados (6th ed.). Bookman.
Hong, W., Thong, J. Y. L., Chasalow, L. C., & Dhillon, G. (2011). User Acceptance of Agile Information Systems: A Model and Empirical Test. Journal of Management Information Systems, 28(1), 235–272. https://doi.org/10.2753/MIS0742-1222280108
Khan, R. M. I., Ali, A., & Alouraini, A. (2022). Mobile Learning in Education: Inevitable Substitute during COVID-19 Era. SAGE Open, 12(4), 1–10. https://doi.org/10.1177/21582440221132503
Kim, J. (2020). Voices of youth in reconceptualising and repositioning the role of mobile learning for sustainable development. Information Technology for Development, 26(4), 711–727. https://doi.org/10.1080/02681102.2020.1749537
Klimova, B. (2019). Impact of Mobile Learning on Students’ Achievement Results. Education Sciences, 9(2), 90-98. https://doi.org/10.3390/educsci9020090
Li, Z., Islam, A. Y. M. A., & Spector, J. M. (2023). Unpacking Mobile Learning in Higher Vocational Education During the COVID-19 Pandemic. International Journal of Mobile Communications, 20(2), 129-149. https://doi.org/10.1504/ijmc.2023.10042533
Lima, T. V. de, Freitas, A. S. de, Ferreira, J. B., & Filardi, F. (2018). O M-Learning como Apoio ao Ensino em Administração. Revista de Administração FACES Journal, 17(3), 28–47.
Maiden, N. (2008). User Requirements and System Requirements. IEEE Software, 25(2), 90–91. https://doi.org/10.1109/MS.2008.54
Marinković, V., Đorđević, A., & Kalinić, Z. (2020). The moderating effects of gender on customer satisfaction and continuance intention in mobile commerce: A UTAUT-based perspective. Technology Analysis & Strategic Management, 32(3), 306–318. https://doi.org/10.1080/09537325.2019.1655537
Marinković, V., & Kalinic, Z. (2017). Antecedents of customer satisfaction in mobile commerce: Exploring the moderating effect of customization. Online Information Review, 41(2), 138–154. https://doi.org/10.1108/OIR-11-2015-0364
Pebriantika, L., Wibawa, B., & Paristiowati, M. (2021). Adoption of Mobile Learning: The Influence And Opportunities For Learning During The Covid-19 Pandemic. International Journal of Interactive Mobile Technologies, 15(5), 222-229. https://doi.org/10.3991/ijim.v15i05.21067
Pires, A. (2021). Covid 19 y la educación superior en Brasil: Usos diferenciados de las tecnologías de la comunicación virtual y las desigualdades educativas. Educación, 30(58), 1-21. https://doi.org/10.18800/educacion.202101.004
Qamar, Md. T., Ajmal, M., Malik, A., Ahmad, J. J., & Yasmeen, J. (2023). Mobile learning determinants that influence Indian university students’ learning satisfaction during the COVID-19 pandemic. International Journal of Continuing Engineering Education and Life-Long Learning, 33(2/3), 1-30. https://doi.org/10.1504/IJCEELL.2023.129212
Romero-Rodríguez, J-M., Aznar-Díaz, I., Hinojo-Lucena, F-J., & Cáceres-Reche, M-P. (2020). Models of good teaching practices for mobile learning in higher education. Palgrave Communications, 6(80), 1-7. https://doi.org/10.1057/s41599-020-0468-6
Saikat, S., Dhillon, J. S., Ahmad, W. F. W., & Jamaluddin, R. A. (2021). A systematic review of the benefits and challenges of mobile learning during the covid-19 pandemic. Education Sciences, 11(9), 1-14. https://doi.org/10.3390/educsci11090459
Sigahi, T. F. A. C., Sznelwar, L. I., Rampasso, I. S., Moraes, G. H. S. M. de, Girotto, G., Jr., Pinto, A., Jr., & Anholon, R. (2022). Proposal of guidelines to assist managers to face pressing challenges confronting Latin American universities: A complexity theory perspective. Ergonomics, 66(9), 1–16. https://doi.org/10.1080/00140139.2022.2126895
Singha, C., & Mohapatra, R. L. (2023, November 15-17). Student Satisfaction on Online Learning During Covid-19 Using Machine Learning Techniques. [Conference presentation abstract]. International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India. https://doi.org/10.1109/ICSCNA58489.2023.10370345
Thanh, L. P., Trang, T. N. Q., Minh, N. N., & Van Hai, H. (2024). Key Determinants of Student Satisfaction in Online Learning During COVID-19: Evidence From Vietnamese Students. Human Behavior and Emerging Technologies, 2024(1), 1–14. https://doi.org/10.1155/2024/5560967
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
Voicu, M. C., & Muntean, M. (2023). Factors That Influence Mobile Learning among University Students in Romania. Electronics, 12(4), 1-18. https://doi.org/10.3390/electronics12040938
Wairiya, M., Sahu, G. P., & Tyagi, N. (2022, January 27-28). Identifying Critical Success Factor for Effective Adoption of Mobile Learning Application: An Empirical Study in Indian Context. [Conference-presentation abstract]. Twelfth International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India. https://doi.org/10.1109/Confluence52989.2022.9734229
Yalcinkaya, T., & Yucel, S. C. (2023). Determination of nursing students’ attitudes toward and readiness for mobile learning: A cross-sectional study. Nurse Education Today, 120, 1-6. https://doi.org/10.1016/j.nedt.2022.105652
Yuan, Y-P., Tan, G. W-H., Ooi, K-B., & Lim, W-L. (2021). Can COVID-19 pandemic influence experience response in mobile learning? Telematics and Informatics, 64, 1-14. https://doi.org/10.1016/j.tele.2021.101676
Zaidi, S. F. H., Osmanaj, V., Ali, O., & Zaidi, S. A. H. (2021). Adoption of mobile technology for mobile learning by university students during COVID-19. International Journal of Information and Learning Technology, 38(4), 329–343. https://doi.org/10.1108/IJILT-02-2021-0033
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Revista Ciências Administrativas

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Para publicação de trabalhos, os autores deverão assinar a Carta de Direitos Autorais, cujo modelo será enviado aos autores por e-mail, reservando os direitos, até mesmo de tradução, à RCA.
Para os textos que apresentam imagens (fotografias, retratos, obras de artes plásticas, desenhos fotografados, obras fotográficas em geral, mapas, figuras e outros), os autores devem encaminhar para a RCA carta original de autorização da empresa que detém a concessão e o direito de uso da imagem. A carta deve estar em papel timbrado e assinada pelo responsável da empresa, com autorização para o uso e a reprodução das imagens utilizadas no trabalho. O corpo da carta deve conter que a empresa é detentora dos direitos sobre as imagens e que dá direito de reprodução para a RCA. É importante salientar que os autores são responsáveis por eventuais problemas de direitos de reprodução das imagens que compõem o artigo.
A instituição e/ou qualquer dos organismos editoriais desta publicação NÃO SE RESPONSABILIZAM pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seus autores