Avaliação da contaminação, sobrevivência e remoção do coronavírus em sistemas de tratamento de esgoto sanitário

Autores

DOI:

https://doi.org/10.5020/23180730.2020.10849

Resumo

O mundo vem sofrendo uma das mais fortes pandemias da história, causada pelo vírus SARS-CoV-2. Até agora, há relatos de aproximadamente nove milhões e sete mil de infectados no mundo. Embora não haja relato conclusivo sobre a transmissão fecal-oral do novo coronavírus entre pessoas, acredita-se que esse tipo de transmissão seja possível, uma vez que o SARS-CoV-2 já foi detectado em efluentes domésticos e em fezes de pacientes. Este artigo consiste em uma revisão de literatura avaliando a sobrevivência dos vírus da família Coronaviridae através do esgoto, seja pela presença no efluente (corrente líquida), seja pela presença no lodo de estação de tratamento, que poderão causar contaminações pelo manejo inadequado dos resíduos produzidos no sistema de tratamento. Foi observado que o vírus é sensível à temperatura e às condições do meio, como incidência da radiação solar, concentração de amônia etc. Com relação às tecnologias de tratamento, embora a desinfecção seja a etapa primordial para inativação do patógeno, algumas tecnologias de tratamento secundário, notadamente MBR e Lagoas de Estabilização, podem auxiliar na remoção de patógenos virais. Por fim, o trabalho mostrou a maior presença de fármacos à base de cloroquina, os quais têm sido utilizados no combate à doença e podem ser tóxicos a sistemas anaeróbios, principal rota de tratamento de esgoto sanitário do Brasil. Diante do novo cenário no país, é necessário que as ETEs passem por readequações, tendo em vista a maior concentração do patógeno SARS-CoV-2.

Downloads

Não há dados estatísticos.

Biografia do Autor

Silvio Rollemberg, Departamento de Engenharia Hidráulica e Ambiental da Universidade Federal do Ceará.

Engenheiro Ambiental, Doutor em Saneamento Ambiental. Professor Substituto no IFCE e Professsor na UNIATENEU. Coordenador de P&D na Fortech Ambiental.

Amanda Nascimento de Barros, Departamento de Engenharia Hidráulica e Ambiental da Universidade Federal do Ceará.

Engenheira Ambiental, Mestranda em Engenha Química pela UFC.

João Pedro Machado de Lima, Departamento de Engenharia Hidráulica e Ambiental da Universidade Federal do Ceará.

Engenheiro Ambiental.

Referências

ABBASZADEGAN, M.; STEWART, P.; LeCHEVALLIER, M.; A strategy for detection of viruses in groundwater by PCR. Appl Environ Microbiol. 1999; 89:283-291.

AHMAD, Jahangir; NAEEM, Shoaib; AHMAD, Munir; USMAN, Adel R.a.; AL-WABEL, Mohammad I.. A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes. Journal Of Environmental Management, [s.l.], v. 246, p. 214-228, set. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.jenvman.2019.05.152.

APPLETON, Hazel. Control of food-borne viruses. British medical bulletin, v. 56, n. 1, p. 172-183, 2000.Abbaszadegan, 2001;

BAIRD, Colin. Química ambiental. Reverté, 2001.

BISOGNIN, Ramiro Pereira; WOLFF, Delmira Beatriz; CARISSIMI, Elvis; PRESTES, Osmar Damian; ZANELLA, Renato. Occurrence and fate of pharmaceuticals in effluent and sludge from a wastewater treatment plant in Brazil. Environmental Technology, [s.l.], p. 1-12, 17 dez. 2019. Informa UK Limited. http://dx.doi.org/10.1080/09593330.2019.1701561.

BOSCH, A;GUIX, S., SANO, D., PINTO, RM. New tools for the study and direct surveillance of viral pathogens in water. Elsevier. 2008; 19:295-301.

BRASIL. Ministério das Cidades. Secretaria Nacional de Saneamento Ambiental - SNSA. Sistema Nacional de Informações sobre Saneamento: Diagnóstico dos Serviços de Água e Esgotos - 2014. Brasília: SNSA/MCIDADES. 212 p., 2016.

BUARQUE, Patrícia Marques Carneiro; LIMA, Ricardo Bruno Pinheiro de; VIDAL, Carla Bastos; BUARQUE, Hugo Leonardo de Brito; FIRMINO, Paulo Igor Milen; SANTOS, André Bezerra dos. Enhanced removal of emerging micropollutants by applying microaeration to an anaerobic reactor. Engenharia Sanitaria e Ambiental, [s.l.], v. 24, n. 4, p. 667-673, ago. 2019. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1413-4152201920190030.

CAO H, Tsai FTC, Rusch KA (2010). Salinity and soluble organic matter on virus sorption in sand and soil columns. Ground Water 48:42–52

CASANOVA et al (2009). Survival of surrogate coronavíruses in water. Water Research.DOI:10.1016/j.watres.2009.02.002

CASANOVA, Lisa; RUTALA, William A.; WEBER, David J.; SOBSEY, Mark D.. Survival of surrogate coronavíruses in water. Water Research, [s.l.], v. 43, n. 7, p. 1893-1898, abr. 2009. Elsevier BV. http://dx.doi.org/10.1016/j.watres.2009.02.002.

CHAN JF, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavírus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9: 221–36

CHAN PKS, To WK, Ng KC, Lam RKY, Ng TK, Chan RCW, Wu A,Yu WC, Lee N, Hui DSC, Lai ST, Hon EKL, Li CK, Sung JJY,Tam JS. 2004. Laboratory Diagnosis of SARS. Emerg Infect Dis10:825–831.

CHEN N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavírus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507–13.

CHERNICHARO, C. A. DE L. et al. Panorama do tratamento de esgoto sanitário nas regiões Sul, Sudeste e Centro-Oeste do Brasil: tecnologias mais empregadas. Revista DAE, v. 66, n. 213, p. 5–19, 2018.

CYRANOSKI, D., Abbott, A., 2003. Apartment complex holds clues to pandemic potential of SARS. Nature 423, 1038.

DONNELLY, C.A., GHANIA, A.C., LEUNGB, G.M., HEDLEYB, A.J., FRASERA, C., RILEYA, S., ABU-RADDADA, L.J., HOB, L.-M., THACHB, T.-Q., CHAUB, P., CHANB, K.P., LAMB, T.-H., TSEC, L.-Y., TSANGC, T., LIUD, S.-H., KONGD, J.H.B., LAUE, E.M.C., FERGUSONA, N.M., ANDERSONA, R.M., 2003. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet 361, 1761–1766.

DRECHSEL P, SCOTT CA, RASCHID-SALLY L, REDWOOD M, BAHRI A (eds.) (2010) Wastewater irrigation and health: assessing and mitigation risks in low-income countries. Earthscan-IDRC-IWMI, UK; www.idrc.ca/en/ ev-149129-201-1-DO_TOPIC.html

ESTES, Mary Kolb et al. Rotavirus stability and inactivation. Journal of General Virology, v. 43, n. 2, p. 403-409, 1979.

FIGUEIREDO, D.; SILVA, L.; BORBA-MIRANDA, L. COVID-19 Em Dados : Brasil Em Perspectiva Comparada Covid-19 Em Dados : Brasil Em Perspectiva Comparada. n. March, 2020.

FONG, Theng-Theng; LIPP, Erin K. Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol. Mol. Biol. Rev., v. 69, n. 2, p. 357-371, 2005.

GARRAFA, C. I. A. Avaliação da qualidade virológica do efluente doméstico tratado e disponibilizado para reúso na cidade de São Paulo 2009.

GORMLEY, Michael; ASPRAY, Thomas J; A KELLY, David. COVID-19: mitigating transmission via wastewater plumbing systems. The Lancet Global Health, mar. 2020. Elsevier BV. http://dx.doi.org/10.1016/s2214-109x(20)30112-1

GUNDY PM, Gerba CP, Pepper IL. Survival of Coronavíruses in Water and Wastewater. Food Environ Virol 2008 1(1):10. DOI: 10.1007/s12560-008-9001-6

GÜNTER Kampf, Andreas Voss, Simone Scheithauer Inactivation of coronavíruses by heat. DOI: 10.13140/RG.2.2.35050.26564/1

GUZMA´n C, Jofre J, Montemayor M, Lucena F (2007) Occurrence and levels of indicators and selected pathogens in different sludges and biosolids. J Appl Microbiol 103:2420–2429

HAO XD, Wang QL, Zhu JY, Van Loosdrecht MCM (2010) Microbiological endogenous processes in biological wastewater treatment systems. Crit Rev Environ Sci Technol 40:239–265

HOLSHUE ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavírus in the United States. N Engl J Med 2020; published online Jan 31. DOI:10.1056/NEJMoa2001191.

HUANG JL, Wang L, Ren NQ, Liu XL, Sun RF, Yang GL (1997) Disinfection effects of chlorine dioxide on viruses, algae and animal planktons in water. Water Res 31:455–460

KITAJIMA M, Iker BC, Pepper IL, Gerba CP (2014) Relative abundance and treatment reduction of viruses during wastewater treatment processes—identification of potential viral indicators. Sci Total Environ 488–489:290–296

LECLERC, H.; SCHWARTZBROD, L.; DEI-CAS, E. Microbial agents associated with waterborne diseases. Critical reviews in microbiology, v. 28, n. 4, p. 371-409, 2002.

LEE, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G.M., Ahuja, A., Yung, M.Y., Leung, C.B., To, K.F., Lui, S.F., Szeto, C.C., Chung, S., Sung, J.J.Y., 2003. A major outbreak of severe acute respiratory syndrome in Hong Kong. NEJM 348, 1986–1994.

LEUNG, G. M. et al. SARS-CoV Antibody Prevalence in All Hong Kong Patient Contacts. Emerging Infectious Diseases, v. 10, n. 9, p. 1653–1656, set. 2004.

LI D, Gu AZ, Zeng S, Yang W, He M, Shi H (2011) Evaluation of the infectivity, gene and antigenicity persistence of rotaviruses by free chlorine disinfection. J Environ Sci 23:1691–1698

LIU, Y.Q., Liu, Y., Tay, J.-H., 2004. The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl. Microbiol. Biotechnol. 65 (2), 143e148.

LOVINS WA, Taylor JS, Hong SK (2002) Micro-organism rejection by membrane systems. Environ Eng Sci 19:453–465

MAO, Kang; ZHANG, Hua; YANG, Zhugen. Can a Paper-Based Device Trace COVID-19 Sources with Wastewater-Based Epidemiology? Environmental Science & Technology, [s.l.], v. 54, n. 7, p. 3733-3735, 23 mar. 2020. American Chemical Society (ACS).

http://dx.doi.org/10.1021/acs.est.0c01174.

MEDEMA, G. et al. Title page Presence of SARS-Coronavírus-2 in sewage . Methods Sewage samples. 2020.

MEHNERT, Dolores U. Vírus no ambiente aquático e o impacto da poluição por água de esgoto. Resumo de conferências, 2001.

METCALF, TG; MELNICK, JL; ESTES MK. Environmental virology: from detection of virus in sewage and water by isolation by molecular biology – a trip of over 50 years. Ann Rev Microbiol. 1995; 49: 461-87

METCALF, Eddy. Inc., wastewater engineering, treatment and reuse. New York: McGraw-Hill, 2003.

MONPOEHO S, Maul A, Bonnin C, Patria L, Ranarijaona S, Billaudel S, Ferre V (2004) Clearance of human-pathogenic viruses from sludge: study of four stabilization processes by real-time reverse transcription-PCR and cell culture. Appl Environ Microbiol 70:5434–5440

MOUSAVIZADEH, L.; GHASEMI, S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of Microbiology, Immunology and Infection, n. xxxx, p. 0–4, 2020.

NADDEO, Vincenzo; LIU, Haizhou. Editorial Perspectives: 2019 novel coronavírus (sars-cov-2). : 2019 novel coronavírus (SARS-CoV-2). Environmental Science: Water Research & Technology, [s.l.], 2020. Royal Society of Chemistry (RSC). http://dx.doi.org/10.1039/d0ew90015j.

OLIVEIRA, S. M. A. C.; VON SPERLING, M. EVALUATION OF 166 TREATMENT PLANTS OPERATING IN BRAZIL, COMPRISING SEVERAL TECHNOLOGIES. PART 1-PERFORMANCE ANALYSIS SÍLVIA M. A. CORRÊA OLIVEIRA Engenheira eletricista. Mestre em Saneamento, Meio Ambiente e Recursos Hídricos pela UFMG. Doutoranda na área. Eng. sanit. ambient, v. 347, 2005.

PARASKEVA P, Graham NJD (2002) Ozonation of municipal wastewater effluents. Water Environ Res 74:569–581

PAULI, V. Ocorrência e distribuição de genótipos G e P de rotavírus em efluente doméstico e córrego da cidade de São Paulo. 2003.

PEIRIS, J. S. M. et al. Coronavírus as a possible cause of severe acute respiratory syndrome. The Lancet, v. 361, n. 9366, p. 1319-1325, 2003.

POUTANEN, S.M., Low, D.E., Henry, B., Finkelstein, S., Rose, D., Gree, K., Tellier RNR, Draker, R., Adachi, D., Ayers, M., Chan, A.K., Skowronski, D.M., Salit, I., Simor, A.E., Slutsky, A.S., Doyle, P.W., Krajden, M., Petric, M., Brunham, R.C., McGeer, A.J., 2003. Identification of severe acute respiratory syndrome in Canada. NEJM 348, 1995–2005.

RAO, V. Chalapati; METCALF, THEODORE G.; MELNICK, Joseph L. Development of a method for concentration of rotavirus and its application to recovery of rotaviruses from estuarine waters. Appl. Environ. Microbiol., v. 52, n. 3, p. 484-488, 1986.

ROMERO, O.C., Straub, A.P., Kohn, T., Nguyen, T.H., 2011. Role of temperature and Suwannee River natural organic matter on inactivation kinetics of rotavirus and bacteriophage MS2 by solar irradiation. 1. 45 (24), 10385e10393.

SASSAROLI, A. Vírus da Hepatite A: A presença e identificação dos genótipos circulantes nas águas de esgoto e de superfície da cidade de São Paulo, Brasil. 2002.

SCHVOERER, Evelyne et al. Qualitative and quantitative molecular detection of enteroviruses in water from bathing areas and from a sewage treatment plant. Research in microbiology, v. 152, n. 2, p. 179-186, 2001.

SHIRASAKI N, Matsushita T, Matsui Y, Oshiba A, Ohno K (2010) Estimation of norovirus removal performance in a coagulation rapid sand filtration process by using recombinant norovirus VLPs. Water Res 44:1307–1316

SHUVAL, H.I., 1990. Wastewater Irrigation in Developing Countries: Health Effects and Technical Solutions. (Summary of World Bank Technical Paper 51), Integrated Resource Recovery Project (GLO/84/007). Washington, D.C., USA.

SHUVAL, H.I., Adin, A., Fal, B., Rawitz, E., Yekutiel, P., 1986. Wastewater Irrigation in Developing Countries: Health Effects and Technical Solutions (Technical Paper Number 51). Integrated Resource Recovery, Washington, D.C., USA.

TEMPLETON MR, Andrews RC, Hofmann R (2008) Particle-associated viruses in water: impacts on disinfection processes. Crit Rev Environ Sci Technol 38:137–164

TSANG, K.W., Ho, P.L., Ooi, G.C., Yee, W.K., Wang, T., Moira, C.Y., Lam, W.K., Seto, W.H., Yam, L.Y., Cheung, T.M., Wong, P.C., Lam, B., Ip, M.S., Chan, J., Yuen, K.Y., Lai, N., 1977-1985. A cluster of cases of severe acute respiratory syndrome in Hong Kong. NEJM 348.

VERBYLA, M. E.; MIHELCIC, J. R. A review of virus removal in wastewater treatment pond systems. Water Research, v. 71, n. 860, p. 107–124, 2015.

WAN Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavírus from Wuhan: an analysis based on decade-long structural studies of SARS. J Virol 2020; published online Jan 29. DOI:10.1128/JVI.00127-20

WANG, X. et al. Concentration and detection of SARS coronavírus in sewage from Xiao Tang Shan Hospital and the 309th Hospital. v. 128, p. 156–161, 2005.

WANG, Y., Wu, X., Wang, Y., Li, B., Zhou, H., Yuan, G., … Luo, Y. (2004). Low Stability of Nucleocapsid Protein in SARS Virus†. Biochemistry, 43(34), 11103–11108. doi:10.1021/bi049194b

WHO issues consensus document on the epidemiology of SARS. Wkly Epidemiol Rec 2003; 78: 373–75.

WHO. Water, sanitation, hygiene, and waste management for the COVID-19 virus 19/03/2020. https://www.who.int/publications-detail/water-sanitation-hygiene-and-waste-management-for-covid-19. Acesso em: 06 de abril de 2020.

WIGGINTON KR, Kohn T (2012) Virus disinfection mechanisms: the role of virus composition, structure, and function. Curr Opin Virol 2:84–89

WIGGINTON, K. R.; YE, Y.; ELLENBERG, R. M.. Emerging investigators series: the source and fate of pandemic viruses in the urban water cycle. the source and fate of pandemic viruses in the urban water cycle. Environmental Science: Water Research & Technology, [s.l.], v. 1, n. 6, p. 735-746, 2015. Royal Society of Chemistry (RSC). http://dx.doi.org/10.1039/c5ew00125k.

WOLFF, Manfred H.; SATTAR, Syed A.; ADEGBUNRIN, Olusola; TETRO, Jason. Environmental survival and microbicide inactivation of coronavíruses. Coronavíruses With Special Emphasis On First Insights Concerning Sars, [s.l.], p. 201-212, 2005. Birkhäuser Basel. http://dx.doi.org/10.1007/3-7643-7339-3_10.

WONG K, Mukherjee B, Kahler AM, Zepp R, Molina M (2012) Influence of inorganic ions on aggregation and adsorption behaviors of human adenovirus. Environ Sci Technol 46:11145–11153

WU, Fuqing; XIAO, Amy; ZHANG, Jianbo; GU, Xiaoqiong; LEE, Wei Lin; KAUFFMAN, Kathryn; HANAGE, William; MATUS, Mariana; GHAELI, Newsha; ENDO, Noriko. SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. Covid-19 Sars-cov-2 Preprints From Medrxiv And Biorxiv, [s.l.], p. 0-0, 7 abr. 2020. Cold Spring Harbor Laboratory. http://dx.doi.org/10.1101/2020.04.05.20051540.

WU, Y.;C. Guo, L. Tang, Z. Hong, J. Zhou, X. Dong, H. Yin, Q. Xiao, Y. Tang, X. Qu, L. Kuang, X. Fang, N. Mishra, J. Lu, H. Shan, G. Jiang, X. Huang, Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. The Lancet Gastroenterology & Hepatology. 0 (2020), doi:10.1016/S2468-1253(20)30083-2.

XAGORARAKI I, Yin Z, Svambayev Z (2014) Fate of viruses in water systems. J Environ Eng 140:01–18

XIAO et al (2020). Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology.DOI: https://doi.org/10.1053/j.gastro.2020.02.055

XU Y, Li X, Zhu B, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med 2020 https://doi.org/10.1038/s41591-020-0817-4

YE, Yinyin; ELLENBERG, Robert M.; GRAHAM, Katherine E.; WIGGINTON, Krista R.. Survivability, Partitioning, and Recovery of Enveloped Viruses in Untreated Municipal Wastewater. Environmental Science & Technology, [s.l.], v. 50, n. 10, p. 5077-5085, 5 maio 2016. American Chemical Society (ACS). http://dx.doi.org/10.1021/acs.est.6b00876.

ZHANG, C. M. et al. Elimination of viruses from domestic wastewater: requirements and technologies. World Journal of Microbiology and Biotechnology, v. 32, n. 4, p. 1–9, 2016.

ZHANG, N.; Y. Gong, F. Meng, Y. Bi, P. Yang, F. Wang, Virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients. medRxiv, in press, doi:10.1101/2020.03.28.20043059

Downloads

Publicado

2020-06-30

Como Citar

Rollemberg, S., Barros, A. N. de, & Lima, J. P. M. de. (2020). Avaliação da contaminação, sobrevivência e remoção do coronavírus em sistemas de tratamento de esgoto sanitário. Revista Tecnologia, 41(1). https://doi.org/10.5020/23180730.2020.10849

Edição

Seção

Artigos