Elizabeth Furtado
Elizabet@feq.unifor.br

Jean Vanderdonckt
Vanderdonckt@qant.ucl.ac.be

1 Iintroduction

DESIGNING UNIVERSAL USER INTERFACES THROUGH AN
ONTOLOGY-BASED METHOD

Abstract

In recent years, universal access has attracted considerable attention by the research
communities, mainly from the perspective of system development. It comes from the
fact that the design of user interfaces for all must cover design issues in multiple contexts
of use where multiple types of users may carry out multiple tasks, possibly on multiple
domains of interest. Existing design methods do not necessarily support designing such
user interfaces. A new design method is presented for this purpose which allows a developer
derives multiple user interfaces from models represented by an ontology of concepts,
relationships, and attributes of the domain of discourse.

Keywords: automated generation of user interfaces, model-based approach, modeling,
ontology, physical level, universal design

Resumo

Recentemente, o tema acesso universal tem atraido a atengfio da comunidade, principalmente
do ponto de vista dos métodos de desenvolvimento de software. Tal interesse se deve ao
fato de que o projeto de interfaces usudrio-computador universais deve considerar questdes
de projeto para diversos contextos de uso, onde diversos usudrios interagem realizando
vdrias atividades, possivelmente de diversos dominios. Os métodos de desenvolvimento
de software existentes nao necessariamente suportam o projeto destes tipos de interfaces.
Um novo método de desenvolvimento é apresentado neste trabalho com este propésito,
0 qual permite o projetista derivar mltiplas interfaces a partir de modelos representados
por uma ontologia de conceitos, relagdes e atributos do dominio em questio.

Palavras-chave: geracdo automdtica de interfaces, enfoque baseado em modelos, ontologia,
nivel fisico e projeto universal.

User Interfaces (Uls) for all (SAVIDIS, AKOUMIANAKIS & STEPHANIDIS, 2001) of interactive applications are
developed for the widest population of users in the most different contexts of use by taking into account differences such as
preferences, language, culture, habits, conventions, and system experience. One way to assure the universal access is to
develop applications with adaptive user interfaces. These interfaces are able to adapt themselves to the user’s characteristics,
varying, for instance, in what concerns the kind of assistance that must be offered the user and how it must be shown to cope
with individual differences induced by universal access. Along with the accessibility factor, the usability factor is another
way to assure the quality of the applications. Universal design of usable Uls poses some difficulties due to the consideration
of these multiple parameters depending on the supported differences. In addition, methods for developing Uls do not mesh
well with this high variety of parameters as these parameters are not necessarily properly identified and manipulated in a
structured way nor truly considered in the design process.

Elizabeth Furtado ¢ Jean Vanderdonckt

The goal of this paper is to present a structured method addressing parameters required for universal design. The method
is supported by a suite of tools all based on an ontology of the domain of discourse and models that capture instantiations of
concepts identified in this ontology for producing multiple UTs for one design situation. These different Uls exhibit different
presentation styles, dialogue genres, and Ul structures.

The remainder of this paper is structured as follows: section 2 provides a state of the art of methods for developing Uls
with a focus on universal design. The method is progressively described in section 3. Section 4 summarizes the main points
of the paper.

2 Related work

The Author’s Interactive Dialogue Environment (AIDE) (GIMNICH, KUNKEL & REICHERT, 1991) is an integrated
set of interactive tools enabling developers to implement Uls by directly manipulating and defining its objects, rather than by
the traditional method of writing source code. AIDE provides developers with a more structured way to develop Ul than with
traditional, yet radically different, “rush-to-code” approaches where unclear stops possibly result in a poorly usable UL

User-Centered Development Environment (UCDE) (BUTLER, 1995) is an object-oriented Ul development method
investigating how software development can function as an extension of business process improvements. Business-oriented
components (BOCs) are soltware objects that model business rules, processes, and data from the end-user’s perspective.
They clearly map this information onto UI objects that are compatible by construction with the information. The advantage
of UCDE is a smooth process starting from high-level abstractions to final Uls.

Another methodological framework for UI development is provided in [(FURTADO, 1997), (HIX, 1989) e (HARTSON
& HIX, 1989)], which enables to integrate usability issues into the software development process from the beginning. The
focal point of this approach is a psychologically based formal task description, which serves as the central reference for
assessing the usability of the user interface under development. This contribution emphasizes the need of a task model as
starting point for ensuring UI usability, whereas UCDE emphasizes the need of a domain model. The MUSE method (LIM
& LONG, 1994) uses structured notations to specify other elements of the context of use such as organizational hierarchies,
conceptual tasks, and domain semantics. Moreover, graphical structured notations are proved to communicate Ul design to
users more easily.

In the above contributions, we see the importance of having a structured way to capture, store, and manipulate multiple
elements of the context of use, such as task, domain, and user. Although the above methods partially consider this information,
they do not consider designing multiple Uls where task [(CARD, MORAN & NEWEL, 1983) ¢ (GAINES, 1994)], domain,
and user parameters are varying, possibly simultaneously. Only the unified process (SAVIDIS, AKOUMIANAKIS &
STEPHANIDIS, 2001) suggests deriving multiple refinements of a task model to cope with individual differences induced
by universal design. However, this contribution is focussing more on task modeling operations than on steps and information
required to progressively take multiple users in multiple contexts of use into account. The following method attempts to fill
this gap by dividing the main problem into the three subsequent levels.

3 The Method

3.1 The Basic Concepts

The propose method is based on an ontology of concepts, relationships, and attributes that nced to be manipulated in a
particular universal design [(GUARINO, 1995) e (TOP & AKKERMANS, 1994)].

The ontology notion comes from the Artificial Intelligence context where it is identified as the set of formal terms with
one represents knowledge, since the representation completely determines what “exists” for the system. We hereby define a
context of use as the global environments in which a population of users, probably with many different profiles, skills, and
preferences, are carrying out a series of interactive tasks on one or multiple semantic domains. In universal design, it is
expected to benefit from the advantage of considering any type of the above information to produce multiple Uls depending
on the varying conditions. These pieces of information of a context of use can be captured in different models (PUERTA,
1997). A model is hereby defined as a set of postulates, data and inferences presented as a declarative description of a Ul
facet. Many facets do exist as well as related models: task, domain, user, interaction device, computing platform, application,

138 Rev. Tecnol., Fortaleza, v. 23, n. 1, p. 137145, dez. 2002.

DESIGNING UNIVERSAL USERINTERFACES THROUGH AN ONTOLOGY-BASED METHOD

presentation, dialogue, help, guidance, tutorial, organizational environment. A model is typically built as a hicrarchical
decomposition of abstract concepts into several refined sub-levels. A model should also encompass relations between these
concepts with roles, as well as for models, and between models.

Each level can be considered as a level of abstraction from the physical level as represented in Figure 1. The physical
level is the instance level where instances of the case study are analysed, the logical level is the model level where theses
instances are mapped onto relevant abstractions, and the conceptual level is the metamodel level where abstractions manipulated
in the previous levels can be aggregated to identify the concepts, relationships, and attributes used in a particular method.

Figure 1- The concept levels of the proposed method.

3.2 The method in three levels of abstraction

The mcthod structurcs the Ul design in three levels of abstraction that can be viewed in Figure 2.

1. In the conceptual level is represented human factors and the expert domain by means of ontology of concepts, relationships,
and attributes to produce multiple Uls.

2.'I'he logical level allows designers to capture requirements of a specific Ul design case by instantiating concepts, relationships,
and attributes with a graphical editor. Each set of instantiations is stored in various models, thus resulting in a set of models
for cach considered design case (n designs in fig. 2).

3. The physical level helps developers in deriving multiple Uls from each sct of models thanks to a model-based UI generator:
in tigure 2, m possible Uls are obtained for Ul design #1, p for Ul design #2,..., r for Ul design #n. The generation is then
exported to a traditional development environment for any manual edition (here, MS Visual Basic).

Rev. Tecnol., Fortaleza, v. 23, n. 1, p. 137-145, dez. 2002. : 139

Elizabeth Furtado ¢ Jean Vanderdonckt

Conceptual level

Ulnifo
Ul ,,dasign #n

Universal design

Figure 2- The different levels of the proposed method for universal design of user interfaces.

3.3 The Phases of the Method

The phases of the method are demonstrated throughout the paper by the usage of a specific series of supporting tools on
the same case study: patient admission at a hospital.

3.3.1 The Definition of the Models for Designing of Universal Applications

The phase of the definition of the models used for represent any universal application is associate to conceptual level of
abstraction of the proposed method. Here, human factors or domain of discourse experts identify the common concepts,
relationships, and attributes that need to be represented in models to design universal applications.

For the simplicity of this paper, the models considered are the following:

e A domain model defines the data objects that a user can view, access, and manipulate through a UL These data objects
belong to the domain of discourse. A domain model can be represented as a decomposition of information items, any
item may be iteratively refined into sub-items. Each such item can be described by one or many parameters (such as
data type, length). Each parameter possesses its own domain of possible values.

e A task model is a hierarchical decomposition of a task into sub-tasks to end-up with actions which are no longer
decomposed [(TOP & AKKERMANS, 1994), (LIM & LONG, 1994)]. The model can then be augmented with tempo-

140 Rev. Tecnol., Fortaleza, v. 23, n. 1, p. 137-145, dez. 2002.

DESIGNING UNIVERSAL USERINTERFACES THROUGH AN ONTOLOGY-BASED METHOD

ral relationships stating when, how and why these sub-tasks and actions are carried out. Similarly to the domain model,
a task model may hold a series of parameters with domains of possible values. For instance, task importance (low/
medium/high), task structure (low/medium/high decomposition), task critical aspects (little/some/many), and required
experience (low/moderate, high) are often considered.

® A user model consists of a hierarchical decomposition of the user population into stereotypes. Each stereotype gathers
people sharing the same value for a given set of parameters. Each stereotype can be further decomposed into sub-
stereotypes. For instance, the population diversity may be reflected by many user parameters such as language, culture,
preference (manual input vs. selection), task experience (elementary/medium/ complex). system experience (elementary/
medium/complex), motivation (low/medium/ high), and experience of a complex interaction media (clementary/
medium/complex).

Figure 3 graphically depicts how the ontology editor can be used at the modeling stage to input, define, and structure
concepts, relationships, and attributes of models used to describe a context of use. Here, the three models are represented and
they all share a description by information parameters. Each parameter has a domain, each domain has a set of values,
possibly enumerated.

. Context of Use
L £ Task Matel
o User Mogel composed of
4 Domam Moriel
ﬁfili;i@es
ifarmation Keny

is performed by
¢ Patatneter domain model user model

=4 Domain,
4 Value

+ £ Task tem - i
; information itern
item has ’
has composed of
v
composed of
has
Y

has

Kigure 3- The ontology editor at the modeling stage.

The big win of this level is that the ontology can be defined once and use as many times as wished. When universal
design requires the consideration of more information in models or more models, this ontology can be updated accordingly
and so the method that supports universal design of Uls,

3.3.2 The Instantiation of the Models for Specifying of Uls

The Ul specification is characterized by a set of design options, such as the selection of the interaction style, the selection
of the dialogue attributes, the selection of the interaction objects, and so on. The problem of choosing UI design options for
adesign situation arises when, in the context of universal UL, there is no “average” user to ensure that interactive applications
give high quality of interaction to all user stercotype. The employment of any particular user modeling approach, since there
is no predefined/fixed set of parameters, shows the generality of this method for universal Ul generation process. In this
phase, which is associate to logical level of abstraction of the proposed method, each model defined before is now instantiated
to. The instantiation occurs when the parameter values are defined for the user model, the task information and the domain
information. ‘

The ontology editor is used to instantiate the context of use, the relationships and attributes of models for the Medical
Attendance domain. Figure 4 depicts the Urgency Admission context of use and the parameters of models of task, user and

Rev. Tecnol., Fortaleza, v. 23, n. 1, p. 137-145, dez. 2002. 141

Elizabeth Furtado ¢ Jean Vanderdonckt

domain. There are two tasks instantiated: to admit patient and to show patient data. The first one is activated by a secretary
and uses patient information during its execution. The values of the user model parameter of the secretary include: elementary
task experience level, input preference for typing in data rather than selecting it, information density preference in the screen
with the enumerated values low and high.

;I‘he information items of a patient include: date day, first name, last name, birthdate, address, phone number, gender
and civil status. The parameter values of an information item of a domain model depend on the UI design process. The
parameter values of the first name information item required by the Ul design process used here (50 characters), domain type
(this is a known domain with somne urnknown values the user can supply), intcraction way (this data is to be used as input),
mandatory status (this data is required), number of possible values (this is not applied to), number of principal values (thisis
not applied to), precision (the number of digits is important) and continuity whether all values of data are spread in a
continuous range of values (this is not applied o).

Mode] Instance

¢ Contextof Use
- & Uryency Admission
Task Maoiiet
Fo admit patient
s € To show patiert data
Y User Model i
+ € Secretary atie ¢ atic To show
ain Modet T ——— - srmenm patient data B
atient intof mation i
Patameter s & secretary
+ date day

' . . - + expetience level
+ - firstname + input preference

2 fast name 'i"tg""'am“da sy
X i
+ -2 birthdate high
4. atfiess
« phone number {7 L patiert information

2 gendel d
4 chal status : ﬁas'ten?xe

+ last name

+ bithdate

+ address

+ phone numbe

+gender
+ civil status

Figure 4- The ontology editor at the instantiation stage.

‘The models instantiated at the logical level are all bused on the same ontology. The big win is that when the ontology
changes, all associated models change accordingly since the ontology is used as a reference input for the graphical editor.
The graphical nature of the editor improves the legibility and the communicability of information, while information which
cannot be represented graphically is maintained in text propertics. The modecls serve for both requircments documentation
and UI production in the next level.

3.3.3 The Generation of Uls from the Models

The main goal of this phase relies in its ability to exploit instantiations captured in individual models to produce multiple
Uls. It is highly desirable to have a tool to help developers in deriving multiple Uls from each set of models. Here, we are
using SEGUIA (fig. 4), a model-based interface development that is capable of automatically generating MS Visual Basic code
for a running UI from any specification file. The Uls generating process occurs in two stages: the first one, by generating the
abstract Uls, which are independent of a particular graphical window manager, UIMS or toolkit and the second one, by
generating the concrete Uls, which are dependent of them. The detailed generation process from the models is described in
[(VANDERDONCKT & BERQUIN, 1999) ¢ (FURTADO et al, 2001)].

Seguia (VANDERDONCKT, 1999) tool implements the abstract Uls generating process by selccting appropriated abstract
interaction objects according to the model parameters and by placing these objects into screen with a visual and logical

142 Rev. Tecnol., Fortaleza, v. 23, n. 1, p. 137-145, dez. 2002.

DESIGNING UNIVERSAL USERINTERFACES THROUGH AN ONTOLOGY-BASED METHOD

arrangement. The activity of interaction object selection is possible by the application of selection rules over the model
parameters. Selection rules are graphically represented in a decision tree (VANDERDONCKT & BODART, 1993). The
abstract interaction objects are after transformed into concrete interaction objects, which are now environment dependent.
The concrete interaction objects are distributed in the screen space following three techniques: physical object localization,
appropriate and aesthetic sizing and ergonomical arrangement.

Figure 5 shows an example of a final Ul generated to the admit patient task. The screen is composed of many concrete
interaction objects related to patient information, such as first name, last name and so on. The concrete interaction object
placement is based on the applicability of following placement rules: i) edit boxes and groups are arranged in a single vertical
column and are left justified in the root window to which they belong; ii) identification labels of objects are placed in a single
vertical column, are left justified between themselves and; iii) action are vertically justified.

Patient Admissien

Date of day : [: COrganization code :

rPatient Identification number :
Name : e -
Affiliation type :

Firstname :

Medicine man :

Birthdate : | I —
Service : ;
Complete address :] evice

Room type
Phone number : IV@ Single (O Two beds) Four beds
rSex
© Male Regmen: |
O Female Message :[]
rCivil status

O Unmarried @ Manied
O Widowed O Divorced

Figure 5- Example of the final UL

This level allows sharing or reusing previously defined models for several Ul designs, which is particularly usetul when
working in the same domain where similar information can be found. It also encourages users to work at a higher level
abstraction than merely the code level and to explore multiple UT alternatives for the same Ul design case. This flexibility
may even produce Uls with unforeseen, unexpected or under-explored features. The big win is that when the set of models
change, all Uls that can be created from this set can change accordingly. The design space is often referred to as the set of all
possible Uls that can be created from an initial set of models for one Ul design.

4 Conclusion

The main contributions and benefits of the method presented in this paper are: Ul design method can be explicitly
structured into three separate levels (i.e., conceptual, logical, and physical). The three levels make it possible to apply the
“separation of concern” principle: (i) a definition of useful concepts first by someone who is aware of Ul techniques such as
user-centered design, task analysis, and human factors; (ii) a model definition where, for each Ul design, multiple sets of
models can be defined on the same basis with no redefinition of previously defined concepts; and (iit) multiple Ul creation:
for each set of Ul models, several Uls can be created by playing with parameters supported by the UI generator and manual
editing is allowed when needed, thus achieving the goal stated in the introduction.

5 Acknowledgements

We wish to thank CNPq and UNIFOR, who have sponsored this project, and extend a special thanks to our team. Qur
deepest thanks go to: Vasco Furtado, Leandro da Silva Taddeo, Daniel William T. Rodrigues, Wilker Bezerra Silva and
Quentin Limbourg.

Rev. Tecnol., Fortaleza, v. 23, n. 1, p. 137-145, dez. 2002. 143

Elizabeth Furtado e Jean Vanderdonckt

References

BUTLER, K. A. Designing deeper: towards a user-centered development environment design in context. In. ACM
SYMPOSIUM ON DESIGNING INTERACTIVE SYSTEMS: PROCESSES, PRACTICES, METHODS & TECHNIQUES.
1995. New York. Anais... New York: ACM Press, 1995, p. 131-142.

CARD, S.; MORAN, T.P.; NEWEL, A. The psychology of human-computer interaction. Hillsdale: Lawrence Erlbaum
Associates, 1983, 85 p.

FURTADQO, E. Mise en oeuvre d’une méthode de conception d’interfaces adaptatives pour des systémes de supervision
a partir des spécifications conceptuelles. 1997. These de doctorat. AIV — Marseille IT1. Marseille.

FURTADOQO, E. et al. An ontology-based method for universal design of user interfaces. In: WORKSHOP ON MULTIPLE
USER INTERFACES OVER THE INTERNET. 2001, Lille. Anais... Lille: Engineering and Applications Trends, 2001,
p. 68-82.

GAINES, B. A situated classification solution of a resource allocation task represented in a visual language, special
issue on models of problem solving,. International Journal of Human-Computer Studies, Netherlands, v. 40, n. 2, p.
243-271, Oct. 1994.

GIMNICH, R.; KUNKEL, K.; REICHERT, L. A usability engineering approach to the development of graphical user
interfaces. INTERNATIONAL CONFERENCE ON HUMAN-COMPUTER INTERACTION, 4., 1991, Stuttgart. Anais...
Stuttgart: HCI International, 1991, p. 673-677.

GUARINO, N. Formal ontology, conceptual analysis and knowledge representation: the role of formal ontology in the
information technology. International Journal of Human-Computer Studies, New York, v. 43, n. 5, p. 625-640, Oct.
1995.

HARTSON, H.R.; HIX, D. Human-computer interface development: concepts and systems for its management. ACM
Computing Surveys, New York, v. 21, n. 1, p. 241-247, Oct. 1989.

HIX, D. Developing and evaluating an interactive system for producing human-computer interfaces. Behaviour and
Information Technology, New York, v. 8, n. 4, p. 285-299, Aug. 1989.

LIM, K. Y.; LONG, J. Structured notations to support human factors specification of interactive systems notations and
tools for design. In: BCS CONFERENCE ON PEOPLE AND COMPUTERS, 9., 1994, Cambridge. Anais... Cambridge:
Cambridge University Press, 1994, p. 313-326.

PUERTA, A. R. A Model based interface development environment. JEEE Software, Los Alamitos, v. 14, n. 4, Jul./
Aug. 1997. Disponivel em: <http://www.arpuerta.com/pubs/ieee97.htm>. Acesso em 10 de maio de 2001.

SAVIDIS, A.; AKOUMIANAKIS, D.; STEPHANIDIS, C. The unified user interface design method. Mahwah: Lawrence
Erlbaum Associates, 2001, 440 p.

TOP, J.; AKKERMANS, H. Tasks and ontologies in engineering modelling. International Journal of Human-Computer
Studies, New York, v. 41, n. 4, p. 585-617, Aug. 1994.

VANDERDONCKT, J. Advicigiving systems for selecting interaction objects. In: INTERNATIONAL WORKSHOP
ON USER INTERFACES TO DATA INTENSIVE SYSTEMS, 1., 1999, Edinburg. Anais... Edinburg: IEEE Computer
Society Press, 1999, p. 152-157.

VANDERDONCKT, J., BERQUIN, P. Towards a very large model-based approach for user interface development,
INTERNATIONAL WORKSHOP ON USER INTERFACES TO DATA INTENSIVE SYSTEMS, 1., 1999, Edinburg,.
Anais... Edinburg: IEEE Computer Society Press, 1999, p. 76-85.

VANDERDONCKT, J. BODART, F. Encapsulating knowledge for intelligent automatic interaction objects selection.
In: CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 1993, Amsterdam. Anais... Amsterdam:
ACM Press, 1993, p.424-429.

144 Rev Tecnol, Fortaleza, v 23, n. 1, p 137-145, dez. 2002

DESIGNING UNIVERSAL USERINTERFACES THROUGH AN ONTOLOGY-BASED METHOD

Elizabeth Furtado

B.Sc. (Informatics) at Universidade Federal do Ceara (1986). Master in Computer Science at Universidade Federal do Ceara
(1993). Doctor in Computer Science - Engineering of Software at Universidade d'Aix Marseille (1997). Professor at Universidade
de Fortaleza. Chairperson of NATI/EAD at Universidade de Fortaleza.

Jean Vanderdonckt

B.Sc. (Mathematics) at University of Notre-Dame de la Paix (1987). Master in Computer Science at University of Notre-Dame
de la Paix (1989). Ph.D. in Comput Science at University of Notre-Dame de la Paix (1997). Post-Doctorate in Human-Computer
Interaction at Stanford University (2000). Associate Professor, Information Systems and Quantitative methods Unit (QANT),
School of Management (IAG), Catholic University of Louvain (UCL).

Rev. Tecnol., Fortaleza, v, 23, n. 1, p. 137 145, dez. 2002. 145

