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Resumo

O processo de secagem em um meio multidimensional capilar poroso, neste caso uma
cdpsula de ep6xi, usado em revestimento de componentes eletrdnicos, é visualizado
através do modelo de Luikov, no qual os potenciais de temperatura, umidade e pressio
sdo solucionados analiticamente utilizando-se técnica de transformada integral generalizada
(GITT), aplicando-se um controle de erro global sobre a solugdo obtida. O comportamento

da convergéncia numérica e do préprio processo de secagem ¢ descrito através de graficos

. e tabelas.
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Abstract

Multidimensional drying in capillary porous media is analytically solved for the associated
temperature, moisture and pressure content distributions. Luikov’s model with linear
transport coefficients and two-dimensional plate geometry is adopted for description of
the simultaneous heat, mass and pressure transfer phenomena. The generalized integral
transform technique (G.L.T.T.) is applied to the problem and the automatically global
error-controlled solution of the coupled partial differential equations is used to achieve
the solutions. The convergence behavior of the proposed cigenfunction expansions is
illustrated.
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1 Introduction

The system of equations proposed by T.TITKOV (1975) is hy far the most frequently adopted in the study of drying
phenomena in capillary porous media with various applications in the engineering and applied sciences. The integral transform
method (COTTA, 1993; COTTA & MIKHAILOV, 1997) has been successfully utilized in the hybrid numerical-analytical
solution of such problems, for both the linear (DUARTE, 1995, 1998; RIBEIRO, COTTA & MIKHAILOV 1993) and non-
linear versions (RIBEIRO & COTTA, 1995; DUARTE, 1998), offering the attractive feature of automatic global error
control in the final results. Both applications previously considered (DUARTE, 1995, 1998; RIBEIRO, COTTA &
MIKHAILOV, 1993; RIBEIRO & COTTA, 1995) where the interest in studying multidimensional situations are ever
increasing, as demonstrated by the finite element method numerical solution in FERGUSON, LEWIS & TOMOSY (1993).

“Therefore, the present contribution advances the integral transform methodology to be applicable in multidimensional drying
problems, such as the one formulated in LEWIS et al. (1996) and THOMAS, MORGAN & LEWIS (1980), and demonstrates
another attractive feature of this class of hybrid method, i.c., the just very mild increase in computational effort for increased
number of dimensions in the problem (independent variables). Essentially, it is reconfirmed that the overall computational
cost in implementing the one-dimensional simulation is exactly comparable to that of solving the two-dimensional problem

here proposed.
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2 General Solution Using the Integral Transform Technique

The simultancous heat, mass and pressure transfer in porous media can be expressed by a set of three parabolic equations,
defined in the finite region V with boundary surface S, coupled through both diffusion equations and boundary conditions
(MIKHAILOV & OZISIK, 1984; RIBEIRO, COTTA & MIKHAILOV, 1993):

W, (x)ge—’b(;(if~)+ L0, =P(x,1,6,,0,,0,)xe V,t>0, k=123 (1,23)
and initial and boundary conditions given respectively by:

0, (x.0)=f.(x)xe V. k=123 (3.4.5)
Bka(x,t)i o, (x,t,@,,@z),xeS,k =123 (6,7,8)

where the equation and boundary operators are written as:

L =VK,(xWV+d (x) k=123 (9.10.11)

d
B, =y, (x)+ 8.k, (X)%l k=123 (12,13,14)

Ve (x) and 5k (x) are prescribed boundary condition coefficients. 17 is the outward drawn normal to surface S. The
non-lincar source terms, P, and @, , may incorporate any coupling between the two potentials.
Afier, the approach deals with the selection of filtering solutions to minimize the non-homogencitics effects:

0, (x’t)zek.\'(x’t)+6kh(x’t) (15)

where the quasi-steady solutions 8, ‘s, include the consideration of characteristic representations of the equation and
boundary source terms.

The resulting formulation for the filtered potential 6, (X,t), is obtained from the solution of the following easier
problems:

LG, :Pk_\,(x,t),x eV, k=123 (16,17,18)

B0, =6, (x,t),xeS k=123 (19,20,21)

Following the formalisms, the homogeneous system (RIBEIRO, COTTA & MIKHAILOV, 1993; COTTA &
MIKHAILOV, 1997; DUARTE & RIBEIRO, 1997) could be solved cxactly through the intcgral transform tcchnique, since
the solution of the following indcpendent auxiliary decoupled eigenvalue problems (k=1,2) of Sturm-Liouville type is available,

LY. (x)=p w (x)P,(x)xeV,i=12.. (22)

LT (x)=2"w,(x)[(x)xeV,i=12... (23)

with boundary conditions:

BY¥,(x)=0,x€S,i=1.2.. (24)

B,I(x)=0,xeS,i=12... | (25)
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Through the associated orthogonality property of the eigenfunctions, we define the integral transform pair as follows:
Transform:

- Y. (x
6, (t): [w (X ——4/—2)9,,,(x,t)dv (26)
v Ni
Inverse:
o \Pi(x) _
91,,(X,t)=g N 0. () 27)
and,
Transform:
— I'(x
0.0= ) %o, G o
Inverse:
205
0, (.0 =% i ® (29)

The normalizations integrals are:

N, :Jw,(x)‘l’iz(x)dv (30)

M’. =IW2(X)F,2(X)dV (3])
14

Using the integral transform methodology for the homogeneous system, after truncation to a sufficient order N, for the
desired convergence, we obtain a transform constant coefficient ordinary differential equations system:

dy(z)

+A2N,2NY(’): (U (32)

where

Y()=16,,(c)6,, (r)-6, (c). 6, (r)..0,, ()" (33)

The initial transform conditions are obtained from the filtered system. Equation (32) can be readily solved through
matrix eigenvalue analysis or through well-established algorithms. Temperature and moisture potentials are computed from
the explicit analytic inverse formulae on egns (27 and 29).

Y

Smm

Figure 1. Evolution of temperature profiles during the process.
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3 Application

We consider the heat, mass and pressure balance cquations written in dimensionless form, [or a symmetric plate geometry
as depicted in FERGUSON, LEWIS & TOMOSY (1993), Fig. (1) subjected to uniform prescribed boundary temperatures,
moisture and pressure contents, and evaluated from uniform initial distributions (DUARTE, 1995, 1998). The transport
cocfficients are assumed constant and the problem formulation according to Luikov’s theory (LUIKOV, 1975) is given by
FERGUSON, LEWIS & TOMOSY (1993):

00 (X,Y,t 5
WI(T) =K, V2O,(X.Y, D)+ K,, V’0,(X.Y, 1)K, + K,, V’O,(X,Y,7) .

0<X<l1, 0<Y<t; T>0 34
20, (XY,
2(9T K, VoK. Y0+ K, Ve, (X Y, 7)+K,,V'0,(X.Y,17),;

0<X<1,0<Y<1; 1>0 (35)
20,(X.Y, 1) . . a 2

707177 =K, VO X.Y,0)+K,VO,X,Y,T)+K, V 6,(X,Y,7);

0<X<1,0<Y<1;1>0 36)
with initial conditions
®,(X,Y,0)=0,(X,Y,0)=0,(X,Y,00=0; 0<X<I, 0<Y<I (37,38,39)
and boundary conditions
20,0.y,1) _ 29,(X07)

X =V, IY ;o 1>0 (40,41)
20,0,Y,7) _ 0: d0,(X,0,7) -0

X ; 7 ;10 (42)
863 (0,’,,Y’T) ~o 9®3(X,O,T)

X 5 oY ; T>0 43)
0(Y,1)=0,1Y,7)=0:;1,Y,7)=1; 150 (44,45,46)
O(X,Lt)=0,(X,L,1)=0:(X,1,7)=1;1>0 (47.48.49)
where the K’s represent:

K, =k, +€d6; K, =¢eMk,; K, =¢€kk, (50,51,52)
K, =6k,; K=k, Ky=k, (53,54,55)
K, =-¢kk,; Ky, =—¢k,; Ky =k,(1-¢) (56,57,58)

and @, is the dimensionless temperature distribution, 8, is the dimensionless moisture content distribution, 0, is the
dimensionless pressure distribution.

Without luss of generality, using the formalisms of the integral transform (RIBEIRO, COTTA & MIKHAILOV 1993;
COTTA & MIKHAILOV, 1997) method the solution for the system of egs. (34,35,36) is now proposed in terms of auxiliary
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problems, expressed by three pairs of easily available decoupled eigenfunction expansions of Sturm-Liouville problems, for
the temperature, moisture and pressure potentials (k = 1,2,3):

dh;;gx) +UIP (X)) =0, XeV (59)
—d%zo, ¥, (1)=0 XeS (60,61)
%g@ 2T, (1) =0,  Yev (©)
i"’%@ =0, [,()=0 Yes (63,64)

These auxiliary problems permit the definition of the integral transform pairs that are necessary for the solution of the
homogeneous problem:

Inverse,
o oo 1 _
Transform,
— %W (X (Y
O (T) =] 6 O, ( )Gk,,(X,Y,r)dXdY ©6)

1/2g1/2
oo N, "M,
The normalizations integrals are,

1
Ny = .[lszl (X)dX 67
0

i
M, = (j)r,;(Y)dY (68)

The problem now is to find numerically the eigenvalues ( 4 ,and lﬁ), eigenfunctions (¥, and I', ) and norms (N, and
M,).

The next step is to find the ordinary diffcrential cquation transform system. Using the transform concept in eqs. (34-58)
and the auxiliary problems (59-64,67,68), after truncation to a sufficient order (i=I..Landj=1..7) for the desired
convergence, we obtain,

ar(
2 + Ay an Y (7) =0,y (43)

where,

Y@) = {01 1)..Ow () Ou(r)..O0w (1)) (44)

The initial transform conditions are similarly obtained applying the integral transform concept to the initial conditions
on the homogeneous problem, resulting:

Y(0)=F(1) (45)

Now, this initial value problem can be solved through matrix eigenvalue analysis or scientific libraries. Initial valuc
problem solvers with local error control schemes are employed for solving the truncated version of the transformed initial
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value problem. An adaptive procedure is utilized to automatically reduce, along the integration path, the truncation orders
required for a certain user-prescribed accuracy yiclding, as a by-product, a global error estimator.

At this point, it is possible written the complete solution to the original problem. Using inversion formulae, temperature
and moisture potentials can now be numerically obtained as:

WX,
O (X,Y,7) :®k.v(X9Y)+ZZW®kU(T);T>0 (46)

i=1 j=I ki K

where @), are the steady-state solutions, ¥, and I, are the normalized eigenfunctions, and O wj represent the transformed
potentials, obtained from numerical solution of the resulting ordinary differential system, after the completion of the integral

transformation process.

4. Results And Discussion

The Luikov problem as proposed above is now solved using the integral transform technique. The numerical results
make it possible an inspection of the overall convergence behavior for the proposed eigenfunction expansions. The governing
parameters, according to the data in LEWIS et al (1996), and CUNHA et al. (2002), assume the following values: p, = 1170,0
Kgm? ¢ =1 400,0J.Kg™" 'K, c_=0,03 Kg.Kg'.°M"! ¢,=0,05 KgKg'Pa £=0,3, A=23.10J.Kg"', A= 0,67 ‘M.°K K,
=576,01.h'm' K" ’km: 3,0.10% Kg.h''.m" ' M, Kp: 1,5.10° Kg.h''.m"".Pa’!, and the truncation orders, N, were taken less
or equal to 9, for temperature, moisture and pressure. The computer program was implemented on Mathemtica® software
(WOLFRAM, 1996), on a Pentium 700 MHz microcomputer with 256 Mb of memory RAM, and a typical run took less than
5 minutes of CPU time.

Table (1) below illustrates the convergence behavior of the two expansions (different N’s) for temperature (©,), moisture
(©,) and pressure potential (®,), obtained at the plate centerlines (Y = 0.5) and different X positions. Since the heat, mass and
pressure transfer processes have, for this problem, markedly different time constants, the values of dimensionless time
considered in cach case, are different. The convergence characteristics are, in both potentials, quite evident, with full
convergence to four digits to moisture and pressure distribution and three digits to temperature distribution being achieved at
N as low as /2. Such results open up broad perspectives for extension of this approach into even more involved coupled
parabolic problems.

Figures (2-5) show drying process, and the temperature, moisture and pressure distributions are obtained with the converged
valucs. As cxpected, the epoxy have a low thermal incrtia spending about 0,/ dimensionlcss time to achicve the thermal
equilibrium in the most deep layer, and are needed more than /500 dimensionless times steps to the porous media to meet the
moisture equilibrium. This characterize a very right mass inertia. The same can be said for the pressure, which has a very
right inertia achicving the equilibrium state before the moisture content, with /400 dimensionless time steps. The ditferent
time equilibrium make the difference in O.D.E convergence number, for moisture, because the negative pressure work over
the material in the same time, carriage to deep inside a considerable quantity of humidity mass, allied to thermo-gradient
elfect. Such process create some difficulty 1o the numerical convergence, and of course, to the real drying process, as it take
place after 300 dimensionless times steps, as can be seen in Fig (4). The drying process can be observed, when the pressure
potential reached a half value of the prescribed boundary and the temperature is established over the material (T > 300).
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Table 1 . Convergence behavior of temperature, ©,, moisture, ©,, and pressure, ©, expansions.
©:(X,0.0,0.01) 0,(X,0.0,0.025)
X/N 3 6 9 12 X/N 3 6 9 12
0.0 0.1494 0.1790 0.1790 0.1785 0.0 105622 10.5636 10.5643 |0.5638
0.2 ]0.1931 ]0.1781 0.1790 |0.1785 0.2 10.5661 [0.5642 |0.5645 |0.5642
04 10.1990 10.1783 [0.1789 |0.1787 04 10.5695 |0.5680 |0.5685 |0.5684
0,6 10.1417 [0.1845 10.1841 10.1841 0,6 10.5996 [0.6012 [0.6016 |0.6016
0,8 103574 103215 0.3218 [0.3218 0,8 [0.7384 10.7359 [0.7353 }0.7353
1,0 1.0000 1.0000 1.0000 1.0000 1,0 1.0000 |1.0000 |1.0000 |1.0000
, @x(X,0.0,150) @2(X,0.0,600)
X/N 3 6 9 12 X/N 3 6 9 12
0.0 |3.3525 ]3.2007 132030 [3.2030 0.0 [2.1274 [2.1270 [2.1270 |2.1270
0.2 13.1346 32072 |3.2057 |3.2057 0.2 {21193 121195 [2.1195 |2.1196
0,4 3.1465 3.2445 3.2440 3.2440 0,4 2.0718 12.0720 [2.0720 |2.0720
0,6 13.6697 |[3.4551 34575 13.4576 0,6 [1.9079 11.9075 [1.9075 |1.9075
0,8 132215 133953 [3.3928 [3.3928 0,8 [1.5412 [1.5419 |1.5419 |1.5419
1.0 1.0000 1.0000 1.0000 i.0000 1,0 1.0000 | 1.0000 | 1.0000 1.0000
03(X,0.0,250) P1(X,0.0,400)
X/N 3 6 9 12 X/N 3 6 9 12
0.0 103131 ]0.3220 03220 10.3220 0.0 10.5697 {0.5709 [0.5709 [0.5709
02 103264 103216 {03216 [0.3216 0.2 105720 10.5713 10.5713 |0.5713
0,4 0.3256 0.3213 0.3213 0.3213 04 10.5787 10.5782 {0.5782 [0.5782
0,6 0.3375 0.3480 0.3480 0.3480 0,6 [0.6198 [0.6211 10.6211 10.6211
0,8 10.5437 10.5349 10.5349 0.5349 0,8 [0.7590 [0.7579 10.7579 10.7579
1,0 [1.0000 {1.0000 1.0000 {1.0000 1,0 {1.0000 |1.0000 [1.0000 |1.0000
L e —
________________________ 7
1= 0.05 e P //
- /
0.8 // ///
® 06 1-0.025 __ — /
o
z 0.4 /
. //
0.2 =001 > -
0.2 0.4 0.6 0.8 1
X

Figure 2. Evolution of temperature profiles during the process.

Rev. Tecnol., Fortaleza, v. 23, n. 1, p. 16-25, dez. 2002.



THE EFFECT OF PRESSURE IN 2D LUIKOV DRYING PROBLEM

35 | T=250

3 =150
2.5

(%, Y, T)

1.5 | —— e T

O 5 """""" e ..\._\“\\ e TN —

0.2 0.4 0.6 0.8 1

3 =400

B 25 h
b: =600 \\\
i R

> =800 ~—

0.2 0.4 0.6 0.8 1
X

Figure 4. Evolution of moisture profiles during the process
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Figure 5. Evolution of pressure profiles during the process
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5 Conclusion

In this paper the multidimensional drying plobem in a capillary porous media was anallitically solved for the associated
temperature, moisture and pressure distributions, using Luikov’s model. The generalized integral transform technique (G.1.T.T.)
was applied to the problem. Convergence behavior of the adopted numerical methods and results of the temperature, moisture
and pressure distributions showed very intcresting aspects of drying process on such porous media.
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Symbols

a_ Moisture diffusdion coefficient
¢, Specific moisture capacity

c, Air capacity

¢, Heat capacity
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Cocfficient of moisture conductivity

Moisture filtration coefficient

Thermal conductivity

Dimensionless temperature distribution
Dimensionless moisture distribution,
Dimensionless Pressure distribution,
Dimensionless co-ordinate
Dimensionless co-ordinate
Dimensionless time.

Thermo-gradient coefficient

Latent heat

Ratio of vapor diffusion coefficient to the coefficient of total moisture diffusion.

m > A D DD
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