Previsão do crescimento do mercado de coletores na região

Júlio Wilson Ribeiro (1) Ricardo José Oliveira Nunes (2)

Estudo e análise do comportamento da demanda de coletores solares em nosso meio.

01) APRESENTAÇÃO

O Ceará possui posição privilegiada em termos de Radiação Solar Incidente dentro das potencialidades brasileiras, e o Brasil supera de muito as possibilidades do Japão e Estados Unidos. Ademais, o decréscimo do custo por m² de coletores solares instalados poderá ser reduzido, desde que se faça produção em série e haja assistência com incentivos fiscais a esse no vo tipo de indústria, que já levou, por exemplo, o Japão a vender mais de 1.000.000 de coletores no ano passado.

Atualmente, no Brasil, o preço do m² de coletores solares já que é baixa a sua produção, é elevado, no caso de substituição do BPF, o que torna o processo de amortização bastante longo e oneroso. Entretanto, os custos poderão cair em mais de 50%, em caso de futuros embargos de petróleo, como ocorreu em 1973, quando, em dois anos, os preços dos derivados subiram 278% (1973/75). o que provocou uma reviravolta nas políticas econômica e energética, a nível internacional, com reflexos até hoje.

Pelo que se conhece, o Brasil passará a produzir coletores em série e em larga escala, diminuindo sensivelmente o preço do m² de coletor instalado, e, desta forma, a economia do Nordste se fortalecerá pela utilização desta nova fonte energética que a muito dispõe em potencial.

02) CARACTERÍSTICAS DO COLETOR PLANO

Presentemente, o mercado nacional apresenta como opção apenas coletores planos, de um só vidro e superfície não seletiva, que, por suas características, é o menos oneroso. O seu rendimento de captação é a relação entre a energia captada e a energia solar incidente no mesmo. A energia efetivamente captada corresponde ao aumento da entalpia de fluido circulante, que pode ser expressa da seguinte maneira: $Qu = Mcp (T_8 - T_e)$ M: Massa do fluido circulante $C_p: Calor específico do fluido circulante$ $T_e, T_s: Temperaturas do fluido circulante na entrada e saída do coletor, respectivamente.$

Um mesmo sistema pode apresentar rendimentos significativamente diferentes, se for operado em condições ou lugares distintos, como na curva a seguir:

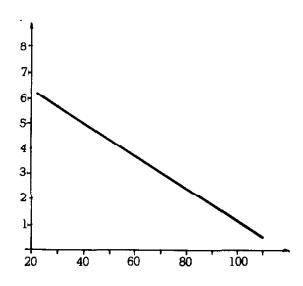


FIG. 1 — Rendimento de captação temperatura de saída do fluido, coletor plano de um só vitral.

Na figura 1, o coletor operou a uma temperatura ambiente de 20° C, velocidade do vento = 5ms⁻¹-e radiação solar incidente de 447 cal cm⁻² dia⁻¹.

Eng. Aeronáutico, M.S.

Eng? Mecânico

03) ECONOMIA DE ÓLEO COMBUSTÍVEL

Consideremos,

 Poder calorífico médio BPF = 12 kwh/kg Caldeira = 85%

Trocador de calor = 90%

Poder calorífico utilizável = 9.18kwh/kg

Assim para efeito de cálculos, a cada 9.18kwh, efetivamente transferidos para o fluido de trabalho de coletor solar de circulação direta, representa uma economia de 1kg de BPF.

A tabela (1) serve para o dimensionamento preliminar de uma instalação solar.

TABELA (1)

T _o (C)	(J K q ⁻¹ C	Qu	Área	BPF
(C)	1)	(KJ)	Coletor	Necessá-
			(m^2)	rio (Kg)
30 40 50 60 70 80 90	4182 4177 4175 4175 4175 4177 4177	20910 62655 104375 146125 187875 229735 271635	1.6 5.4 10.0 15.6 23.3 35.0 53.7	0.63 1.90 3.16 4.42 5.69 6.95 8.22

A tabela acima baseia-se numa temperatura ambiente de 27°C' e radiação de 447 cal cm-2 dia-1.

Os resultados da tabela (1) foram levantados em João Pessoa, onde o ponto ótimo de operação economicamente está em torno de 60°C. Como no nosso Estado há uma taxa média anual de 502 cal cm-2 dia-1 para radiação, o limite ótimo de operação dos coletores está por volta de 70°C.

Os cálculos da tabela supõem a área de coletor necessária para aquecimento de uma tonelada de água num dia, utilizando coletor plano comercial.

04) CÁLCULO DO SISTEMA DE COLETORES

(Caso de um curtume)

HIPÓTESES

— Vazão diária.....2400 litros

Temperatura ambiente....25°C

Temperatura exigida.....70°C

Calor a ser transferido para o fluido, "Qu"

$$Ou = 2.4 \times 187875KJ = 125.25 Kwh$$

Area total de coletor necessária "A"

$$A = 23.3 \times 2.4 = 55.92 \text{m}^2$$

Custo de coletor por m2

 $C = 42500.00/m^2$

Custo da área total de coletor necessário, "CT"

$$CT = 56 \times 42500 = 2380000$$

"CEQ": Consumo equivalente de BPF para o referido preaquecimento, segundo a tabela (1).

$$CEQ = 2.4 \times 5.69 = 13.656 \text{Kg/dia}$$

Equivalente (BPF) em cruzeiros

$$CEQ = 655.48/dia$$

T: Tempo de amortização

$$T = 9.95$$
 anos

Vida útil média do coletor "VU" em anos.

$$VU = 20$$

Lembramos que os cálculos acima não incluem os custos adicionais referentes aos acessórios.

O custo global, CG, é da ordem de: 1.1CT CG 1.25CT

OBS.:

Para efeito de cálculos, deveria ter sido utilizado 11.4Kwh/Kg, que é o poder calorífico inferior, no lugar de 12Kwh/Kg, que é o PC superior do BPF Porém, estes valores por serem próximos, isto praticamente não altera os objetivos e conclusões deste tra balho.

COMENTÁRIOS

- O Japão fabrica mais de 1.000.000 de coletores/ano; os EUA, cerca de meio milhão, França e Alemanha, cerca de 100.000 e o Brasil cerca de 10.000 coletores/ano.
- Para se ter uma idéia, no cenário de mercado americano, a expectativa do crescimento de preços das fontes convencionais de energia, como petróleo, gás e eletricidade levará o mercado de equipamentos solares a um constante crescimento, assim, as vendas de equipamentos solares instalados atingiram:

TABELA (2)

Āno	Valor US\$ (em milhões)	Cr\$ (Mar 83) (em bilhões)
1979	150	60.9
1980	300	121.8
1981	500	203

Em caso de crise na importação do petróleo, ocorrerá um aumento da demanda de coletores e decréscimo do tempo de amortização dos mesmos, isto pela necessidade de operação das indústrias. Porém, nem sempre as atenções estão voltadas para a produção de coletores, já que existe a concorrência da geração de energia convencional, quer seja térmica ou elétrica. Nota-se no entanto que com a elevação dos preços de geração de energia convencional, há um retorno de atenções para esta fonte de energia alternativa, fato bem marcado pela crise mundial de petróleo de 1973.

BIBLIOGRAFIA

- 01. Klüppel, R. P. "Economia de Óleo Combustível com o uso de Coletores Solares para Aquecimento", Boletim da Associação Brasileira de Energia Solar, V-2, pp 73-78, 1979.

 02. ASTM Standardization News, maio 82.

 - Engenharia Industrial, maio 81.

 - 04. Jornal do Brasil, 22/11/82. 05. O Estado de São Paulo, 24/04/81.
 - Gazeta Mercantil, 25/03/83.