CRIPTOGRAFIA DE DADOS

Carlos Cristiano Cabral

O presente artigo deseja fornecer princípios elementares para a implementação de programas de computador voltados à proteção genérica de informações.

ABSTRACT

This article wishes to provide elementary principles useful to implement computer software concerning generic information protection.

1.0 - INTRODUÇÃO

Assegurar privacidade aos dados, muitas vezes obtidos sob cerrados esforços e elevados investimentos, tem conquistado, pau latinamente, destacado lugar na escala de prioridades de empresas tão preocupadas em salvaguardar o segredo de suas conquistas, quanto em estabelecer um rigido controle de suas operações nas mais diversas áreas, tais como a administrativa, a contábil e a econômica.

Notadamente, com o advento dos computadores e a alta capacidade de certos dispositivos para armazenar dados, tomou-se possível a baixíssimo custo, levar em um único disquete entre páginas de um caderno, um volume impressionante de informações. O incalculável valor destas informações passou a exigir do proprietário das mesmas, procedimentos extras de segurança que garantissem seu uso exclusivo nas tarefas para as quais foram obtidas, e somente por pessoas autorizadas.

A informação, que é obtida a partir de dados posicionados numa ordem lógica desejada, passa a

Surgem, assim, processos de codificação de dados também conhecidos como criptografia, cujo objetivo mister é impossibilitar, ou senão, dificultar o acesso não autorizado a estes dados.

2 — NOÇÕES PRELIMINARES

Alguns termos especiais utilizados na extensão do texto são aqui esclarecidos, a fim de facilitar o seu entendimento.

BIT

Entende-se por **bit** (5) a menor unidade de trabalho de um computador. Um **bit** pode assumir apenas os valores 0 ou 1 e através da combinação destes valores são representados todos os números, letras e caracteres especiais (caracteres gráficos e de pontuação) utilizados pelo computador.

Em uma sequência de 8 bits chamada de byte, o computador pode representar qualquer dos caracte-

obter então atenção paralela à proteção de acesso aos programas. Não mais satisfaz a garantia de que somente pessoas autorizadas terão acesso aos programas que manipulam os dados. Agora, pois, urge que seja priorizado o sigilo dos dados, mais ainda que a segurança do acesso aos programas.

^{*} Eng. Civil, professor Auxiliar da Unifor

res supra-citados. Veja, por exemplo, como o computador representa internamente as letras "I" maiúscula e minúscula:

CARACTERE REPRESENTAÇÃO (1) (8 bits)

1	01001001
i	01101001

CHAVE

Denomina-se chave a uma seqüência específica de caracteres que sirva de base ao processo de criptografia de determinados dados. Usualmente, letras minúsculas são diferenciadas das maiúsculas durante a codificação dos dados, portanto é importante ser rigoroso nos detalhes durante a formação de uma chave. Observe que a chave "CRISTO" não decodifica os dados codificados pela chave "CRISTO", uma vez que a letra "I" foi utilizada diferentemente.

CRISTO e CRISTO são chaves diferentes, como mostra a fig. 1 abaixo:

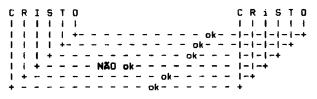
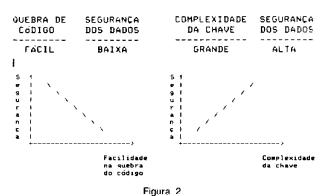



Figura 1

QUEBRA DE CÓDIGO

O fato de se conseguir decodificar plenamente os dados cuja chave e processo de criptografia são desconhecidos, é chamado de quebra de código. A facilidade de se quebrar um código é inversamente proporcional à eficiência do processo de criptografia e à complexidade da chave utilizada.

3.0 - TÉCNICAS DE CRIPTOGRAFIA

A seguir são comentados os modelos mais comuns utilizados para a criptografia de dados, valendo ressal-

tar que existe total independência entre os mesmos, sendo possível inclusive mixá-los no intuito de, oportunamente, maximizar a garantia ao sigilo dos dados.

3.1 - Substituição

Consiste em estabe lecer um alfabeto referencial onde, a cada letra do alfabeto comum, corresponda um e somente um caractere do alfabeto referencial e vice-versa. Uma tabela de equivalência entre o alfabeto comum e um determinado alfabeto referencial **R**, poderia ser como se segue:

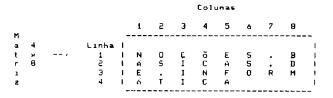
ALFABETO					CARACTERES																					
	-																									
COMUM	Α	В	C	Đ	Ε	F	G	Н	1	J	К	L	н	N	C	P	Q	R	S	T	U	Ų	W	Х	Y	Z
	_						_	_	_	_	_	_						_		_	_	_	_	_	_	
REFERENCIAL	4	Y	Х	W	Ų	U	ı	5	H	G	Р	U	N	Ħ	L	K	J	I	н	Ð	F	Ε	Ð	С	В	A

Conforme o alfabeto referencial acima, a frase acesso negado" seria criptografada como "ZXVHHL MVTZWL". Para retornar a frase à sua forma original, bastaria aplicar o mesmo processo em sentido inverso, isto é, pesquisar cada caractere no alfabeto referencial e encontrar seu equivalente no alfabeto comum.

Uma forma variante bastante usada na aplicação de criptografia por substituição é a do alfabeto circular, que consiste em deslocar em N posições, à direita ou à esquerda, o alfabeto comum. Assim, teríamos:

ALFABETO						CARACTERES																				
COMUM																									Υ	
LUMUM	-		Ļ	ע	-	r		"	•	,	•	-	"	"	٥	-	*		٥	,	u	٧	•	٩	'	-
REFERENCIAL	C	D	Ε	F	G	н	I	J	K	L	M	N	0	P	9	R	S	Ŧ	U	٧	W	X	Y	Z	A	B
	_																									

Observe que todos os caracteres foram deslocados à esquerda em duas posições, e aqueles da extrema esquerda (o "A" e o "B") foram deslocados para a extrema direita do novo alfabeto.


3.2 — Transposição

Permitindo maior elaboração que a substituição, a transposição consiste em tomar por base uma matriz L x C, de L linhas e C colunas, onde o texto é disposto seqüencialmente em cada linha a partir da coluna 1 até a coluna C. O texto criptografado é montado então, lendo-se seqüencialmente cada coluna, a partir da linha 1 até a linha L.

No exemplo a seguir, substituimos todos os espaços em branco por pontos, para facilitar a visualização. Supondo uma matriz 4x8, vejamos como seria criptografada uma mensagem:

Mensagem original:

NOÇÕES.BÁSICAS.DE.INFORMÁTICA

Mensagem criptografada: NÁEÁOS. TÇIIIŏCN-CEAFASSO..RBDM

Formas mais complexas permitem que a transposição, fazendo uso de processos determinísticos, utilize uma chave especial de acesso ao código gerado.

3.3 - Manipulação de bits

A técnica de manipulação de **bits** (4) busca tirar proveito tanto das instruções internas do microprocessador, quanto do fato de que todo caractere é formado por uma següência de **bits**.

Há, desconsiderando as instruções de deslocamento de bits, quatro instruções básicas de manipulação de bits pertinentes à grande maioria dos computadores: AND, OR, XOR e NOT. A instrução NOT possui um único operando, enquanto as demais possuem dois. As tabelas a seguir, explicitam o(s) operando(s) e o resultado da operação em questão:

AND	0	1	OR ⊌	1	NDT 0 1	XOR 0 1
+			+		+	+
∂ ∣	0	ø	010	1	110	0 1 0 1
1 1	à	1	1 1 1	1		1 1 1 0

Manipular bits significa, portanto, efetuar sobre eles operações lógicas como as supra-citadas.

Vejamos. Tomando a instrução XOR, e considerando a chave de criptografia como sendo o caractere "3", cuja representação binária é 00110011, como seria codificada a palavra "PAZ"?

Desta forma, a palavra "PAZ" criptografada com a chave "3" resulta na palavra "cri" de acordo com o padrão ASCII (2).

4 - CONCLUSÃO

Fica notório que existe um vasto universo de métodos de criptografía passivo de ser utilizado nas mais diversas aplicações.

Cabe, portanto, determinar para cada tarefa e tipo de dado a ser codificado, qual a técnica mais adequada e qual a melhor relação custo/beneficio obtida (3), lembrando que, na maioria das vezes, mas nem sempre, a eficiência de um método em termos de velocidade de processamento é inversamente proporcional ao nível de segurança alcançado.

De resto cabe frisar que o assunto criptografia de dados é bem mais extenso e profundo do que nos foi possível tratar neste artigo. A comparação de performance entre os vários métodos, suas qualidades e deficiências, bem como um refinamento de tudo o que ora foi exposto, poderá vir a ser título de um artigo à posteriori.

5 - AGRADECIMENTOS

À MiniSol Informática Ltda., **software-house** local especializada em proteção de dados, por todo o apoio prestado na elaboração deste trabalho.

6 - REFERÊNCIAS BIBLIOGRÁFICAS

- ANGERMEYER et. al. Tricks of the DOS masters The Wait Group's s/1 1987.
- BORLAND Turbo Pascal Reference Guide version 5.0 Borland International s/1 1988.
- HOFFMAN, L. Modern Methods for Computer Security and Privacy — Prentice Hall — s/1 — 1977.
- SCHIELDT, H.—Advanced Turbo Pascal Borland-Osborne/McGraw Hill — s/1 — 1990.
- VELLOSO, F.C. Informática, Uma Introdução – Ed. Campus – 1986.