Métodos para avaliações econômicas sob condições de risco

Methods for economic evaluation under risk conditions

Vinicius Amorim Sobreiro¹, Mariana Rodrigues de Almeida², Wilson Kendy Tachibana³ e Daisy A. N Rebelatto⁴

Resumo

Os métodos econômicos tradicionais não têm como realizar avaliações dos investimentos com precisão, pois existem várias limitações nos procedimentos matemáticos. Assim, devido à complexidade da estrutura de mercado, as avaliações dos investimentos precisam considerar as situações de riscos, pois expor o patrimônio de uma organização é uma tarefa muito árdua para ser executada. Para isso, o objetivo deste artigo é corroborar as taxionomias da literatura para análise de investimento, expondo a aplicação das técnicas CAPM, APT e VAR em um projeto financiado por capital próprio e de terceiros. O método de pesquisa utilizado foi respaldo por meio de um embasamento teórico que remete aos conceitos básicos dos métodos econômicos tradicionais e, em seguida, realizou-se um estudo de caso para implementar os métodos na prática. Com base nessa avaliação, os resultados obtidos por meio dessa pesquisa têm como subsidiar as tomadas de decisões dos gestores no âmbito organizacional.

Palavras-chave: Projeto de investimento. Métodos econômicos e riscos.

Abstract

The traditional economic methods are unable to conduct investment evaluations with precision, as there are several limitations in the mathematical procedures. Therefore, due to the complexity of the market structure, investment evaluations must consider risk situations, as exposing an organization's assets is a very arduous task to be executed. The objective of this article is to corroborate the systematic classification of the literature on investment analysis, demonstrating the application of the CAPM, APT and VAR techniques to a project partially self financed and partially financed by third parties. The research method used was backed by a theoretical base which refers to the basic concepts of traditional economic methods and, following, a case study was undertaken to put the methods into practice. Based on this evaluation, the results obtained through this research can assist in organizational decision making by managers.

Keywords: Investment project. Economic methods and risks

Introdução

Na atual conjuntura econômica mundial, a questão de análise de investimento é crucial e vital para a continuidade e sobrevivência das organizações. De acordo com Queiroz (2001), a análise de investimento exerce um papel fundamental na alocação eficiente dos escassos recursos perante um ambiente organizacional.

Segundo Securato (1996), as decisões financeiras em condições de risco apresentam o significado se a administração financeira da empresa foi um fracasso ou um sucesso perante as organizações. O risco pode ser compreendido, segundo Gitman (2004), como uma dada possibilidade da variabilidade de retornos, ou seja, se os benefícios esperados ou exigidos podem remunerar os investimentos efetuados.

¹ Escola de Engenharia de São Carlos – USP - sobreiro@sc.usp.br

 $^{^{2}\,}$ Escola de Engenharia de São Carlos — USP - almeidamariana@yahoo.com

³ Escola de Engenharia de São Carlos – USP- tachiban@prod.eesc.usp.br

⁴ Escola de Engenharia de São Carlos – USP- daisy@prod.eesc.usp.br

Kassai et al. (2000) não vislumbravam o fato de a produção futura ser duvidosa na utilização dos métodos tradicionais de análise dos investimentos. Com base nesse contexto, de produção futura duvidosa, verifica-se a dificuldade das técnicas tradicionais de análise de investimentos em condições de risco, segundo as quais o financiamento do capital pode ser resultado de aplicação de capital próprio e de terceiros.

A partir disso, este presente trabalho tem como objetivo corroborar as taxionomias da literatura, quando aplicados os métodos de análise de investimento em condições de risco em um estudo de caso, visto que os mesmos auxiliam nas tomadas de decisões dos gestores nas organizações.

Na sequência, este artigo está estruturado da seguinte maneira: na seção 2, apresentam-se os conceitos básicos referentes aos métodos tradicionais da engenharia econômica; na seção 3, demonstram-se os métodos de avaliação do risco na análise de investimentos; na seção 4, aplicam-se os métodos de análise de investimento em condições de risco no estudo de caso. Em seguida, as reflexões finais.

1 Métodos tradicionais

Os métodos tradicionais de análise para investimentos mais utilizados pelos gestores das organizações podem ser analisados como: (a) Valor Presente Líquido; (b) Taxa Interna de Retorno; (c) Taxa Interna de Retorno Modificada; (d) Payback Simples; (e) Payback Descontado; (f) Payback Duration; (g) Payback TIR; (h) Payback MTIR⁵; (i) Taxa de Retorno Contábil; (j) Valor Anual Uniforme Equivalente; (l) Custo Anual Equivalente; (m) Índice de Lucratividade; e (n) Índice de Rentabilidade (FIGUEREDO, 2003). Entretanto, Bailarine (2003) argumenta que os métodos mais relevantes são:

> • Valor Presente Líquido: consiste na soma de todos os valores presentes do fluxo de caixa líquido⁶, ou seja, um valor monetário da diferença entre todas as entradas e saídas de caixa resgatadas ao valor presente, conforme ilustra pela Equação 1 (OLIVEIRA, 2003);

$$VPL = -I + \sum_{N=1}^{N} \frac{FC_{N}}{(1+T)^{N}}$$
 (1)

Em que:

VPL é o valor presente líquido; I é o investimento inicial; FC é o fluxo de caixa líquido; N é o número de períodos;

T é a taxa mínima de atratividade⁷.

• Taxa Interna de Retorno: compreende como uma taxa de desconto que iguala o valor presente das entradas de caixa esperadas de um projeto ao valor presente das saídas esperadas de caixa, conforme ilustra pela Equação 2 (BAILARINE, 2003);

$$-I + \sum_{N=1}^{N} \frac{FC_{N}}{(1+T)^{N}} = 0$$
 (2)

Em que:

I é o investimento inicial; N é o número de períodos; FC é o fluxo de caixa líquido; e T é a taxa interna de retorno.

O pressuposto básico deste modelo, segundo Kassai et al. (2000), está centrado no princípio de que a taxa interna de retorno (TIR) é a taxa média retorno de e que o período ressarcimento do capital acontece no momento em que organização dobra seu capital inicial. Sua fórmula é: , o Payback MTIR é muito semelhante ao Payback TIR, sua única diferença consiste na utilização da taxa MTIR, ao contrário da TIR.

⁶ Fluxo de caixa pode ser compreendido como a diferença entre os fluxos de entrada e saída de dinheiro de um determinado projeto (BRUNI e FAMÁ, 2004).

Segundo Rebelatto (2004), é taxa mínima a ser alcançada em determinado projeto; em contrário; rejeita-se o projeto.

Uma das principais dificuldades referentes à taxa interna de retorno é quando deriva o fluxo de caixa apresentando mais de uma inversão de sinal, o que implica ocorrer em múltiplas taxas internas de retorno. Mais precisamente, é possível encontrar taxas internas de retorno que podem ser compreendidas apenas no aspecto matemático e não econômico (SAMANEZ, 2002). Enquanto isso, Kassai et al. (2000) sugerem a taxa interna de retorno modificada, a fim de solucionar esse tipo de problema, pois essa considera a aplicação da taxa de reinvestimento aos fluxos de caixa positivos (ou lucros) e a aplicação da taxa de financiamento aos caixas negativos ou de investimentos.

Segundo Queiroz (2001), a principal vantagem da utilização desses métodos, quando aplicados na análise de investimentos, é devido à ausência de dificuldade para a compreensão e utilização por parte das organizações. Vale ressaltar que esses métodos apresentam as seguintes restrições, descritas a seguir:

- Não fornecer a perda máxima esperada pelo projeto: não possibilitam a apreciação antecedente da suportabilidade econômica dos projetos de investimento (SOUZA, 2006);
- Contemplar com uma taxa mínima de atratividade igual para toda a organização, pois, mediante a utilização
 de uma mesma taxa mínima, pode-se rejeitar os projetos de investimento considerados viáveis. Entretanto de
 menor retorno, nesse contexto, Hirschfeld (2000) argumenta que o principal problema da adoção da mesma
 taxa de mínima de atratividade para a empresa como um todo reside no fato de a viabilidade depender sempre
 da taxa mínima de atratividade;
- Considerar as condições de incertezas sempre de forma isolada, quando realizar uma composição de diversificação eficiente dos investimentos, pois os projetos de investimentos podem concorrer para a diminuição do risco total da organização.

Para transpor essas restrições, Queiroz (2001) aponta que é necessário realizar a adoção de novas técnicas, tais como o modelo de precificação de capital, teoria de precificação por arbitragem e do valor no risco utilizadas no mercado de capital na avaliação econômica de projetos, reputando-se que o mercado de capitais no tratamento da relação risco deve considerar que o retorno é o maior progresso.

2 Modelo de precificação de capital

O modelo CAPM propicia estimar o custo de capital, ou seja, a taxa de retorno requerida pelo gestor do capital próprio (SAMANEZ, 2002). Outra questão a ser considerada é quando se precisa determinar a taxa de risco do investimento. Para isso, é utilizado o modelo do CAPM para definir a taxa de risco (SHARPE, 1964), porém o valor encontrado referente aos dados do investimento a ser analisado será relacionado com o nível de alavancagem de mercado. Logo, se torna essencial encontrar o custo do capital sem o índice beta não alavancado (HAMADA, 1972). Dessa maneira, essa taxa pode ser expressa em termos de valores esperados, em que o retorno esperado do ativo é constituído por dois valores, sendo o primeiro é a rentabilidade da aplicação sem riscos e o segundo significa o prêmio pelo risco.

A Equação 3 apresenta os procedimentos matemáticos necessários para avaliar o retorno esperado.

(3)

Em que:

 $\bar{R} = R_f + \bar{\beta} (\bar{R_m} - R_f)$

R é o retorno esperado;

 R_f é a rentabilidade sem risco:

 R_m é a rentabilidade esperada de mercado;

 β é o beta do investimento, ou seja, a volatilidade do retorno do investimento em relação ao retorno de mercado.

Para Famá et al. (2002), o modelo CAPM apresenta o custo do capital da empresa mediante o retorno mínimo esperado pelo investidor, dado o nível de risco sistemático. Isso implica na relação entre o retorno de um projeto e o retorno do mercado. Mais precisamente, o incremento necessário no retorno de um projeto para que o risco sistemático deva ser adequadamente remunerado por meio da medida, por meio do parâmetro beta.

Na aplicação do modelo, Fonseca e Bruni (2003) apresentam a necessidade de estimar as seguintes variáveis:

- Rentabilidade sem risco: significa adotar a taxa média Selic (Sistema Especial de Liquidação e Custódia), visto que a mesma registra as transações com títulos públicos e avalia o custo de captação da dívida interna;
- Rentabilidade esperada de mercado: no mercado brasileiro, faz-se uso do índice IBOVESPA;
- Beta do investimento: é dado pelo coeficiente da regressão dos retornos realizado pelo investimento, sobre
 os retornos realizados pelos índices de rentabilidade do mercado. Segundo Queiroz (2001), o beta do
 investimento pode ser representado pela seguinte Equação 4.

$$\beta = \frac{Cov(R, R_m)}{\sigma^2(R_m)} \tag{4}$$

Em que:

 $Cov(R,R_m)$ é a covariância entre a distribuição do retorno do investimento e a distribuição do retorno da rentabilidade esperada de mercado;

 $\sigma^{\,2}(R_{\scriptscriptstyle m})\,$ é a variância da distribuição do retorno da rentabilidade de mercado.

Nesse contexto, Queiroz (2001) versa que a aplicação do modelo CAPM na análise de investimento, mediante a estimação da TMA do projeto de investimento, pode ser expressa por meio do CAPM, conforme a Equação 5.

$$TMA = R_f + \beta (\bar{R}_m - R_f)$$
 (5)

A estimação da TMA por meio do modelo CAPM transpõe a limitação de aceitação da mesma taxa mínima de atratividade para a organização como um todo.

2.1 Modelo de precificação por arbitragem

A expressão fundamental APT (*Arbitrage Pricing Theory*) fornece o retorno que compensará realizar o investimento para um determinado risco (BODIE, KANE; MARCUS, 2000). Miranda (1997) aponta Stephen A. Ross como o principal mentor desse método por meio da publicação do artigo: *The Arbitrage Theory of Capital Asset Pricing*, em que esse autor realiza o relacionamento dos retornos mediante uma série de fatores, no âmbito setorial ou macroeconômico.

O modelo APT apresenta um procedimento diferente do CAPM, porque não se baseia na irrestrita carteira de mercado, considerando a existência plausível de várias fontes causadoras de risco sistemático. Esses procedimentos são refletidos nas movimentações de vários índices representativos do mercado: (a) flutuações do preço internacional de petróleo; (b) da taxa de juros; (c) da taxa de câmbio; (d) do produto interno bruto; (e) da taxa de inflação; (e) entre outros (MEIRELLES, 2004).

Queiroz (2001) argumenta que a principal diferença entre os métodos CAPM e o APT é devido considerar várias fontes causadoras do risco sistemático⁸. Nessa composição, o APT fornece um valor de retorno mais justo, visto que compense pelo risco sistemático do investimento. Sendo assim, o CAPM pode ser analisado como um resultante do APT. A Equação 6 apresenta o relacionamento entre essas variáveis.

$$TMA = R_f + \beta (\bar{R}_m - R_f) + \beta_k (\bar{R}_m - R_f) + \beta_k (\bar{R}_m - R_f) + \dots + \beta_k (\bar{R}_m - R_f)$$
(6)

Em que:

TMA é taxa mínima de atratividade;

 R_f é a rentabilidade sem risco;

⁸ O risco sistemático segundo Gitman (2004) é compreendido como o risco do investimento atribuído a fatores de mercado que afetam todas as empresas.

 R_m é a rentabilidade esperada de mercado;

 β é o beta do investimento, ou seja, a volatilidade do retorno do investimento em relação ao retorno de mercado;

 β_k é o beta do projeto relativo ao k-ésimo índice do ambiente setorial;

O modelo APT pode representar melhor a realidade complexa por meio de uma modelagem multifatorial. Enquanto isso, o CAPM é fundamentado apenas em um fator. Com isso, o resultado dessa avaliação define a utilização de uma TMA específica para o projeto de investimento. No entanto, as avaliações dos investimentos não estimam a perda máxima esperada no projeto, assim incrementa a utilização de outro método para estimar o valor dessa perda. O método utilizado para analisar esse tipo de perda é por meio do VAR.

2.2 Modelo de valor do risco

O valor no risco (*Value at risk* - VAR) é um modelo para estimar o pior valor de uma possível perda de capital. Esse valor é o resultado para um intervalo de tempo referente a um intervalo de confiança referente às condições de anormalidade (SECURATO, 2002).

Ribeiro e Ferreira (2005) definem o VAR como sendo a pior perda esperada ao longo de determinado intervalo de tempo, sob condições normais de mercado e dentro de determinado nível de confiança, ou seja, o VAR é um percentil da distribuição de probabilidade das perdas. A principal característica do VAR, de acordo com Queiroz (2001), consiste na avaliação da suportabilidade econômica do projeto de investimento, sendo estimada pela Equação 7.

$$VAR = \alpha \sigma(TIR)I \tag{7}$$

Em que:

VAR é o valor no risco do investimento:

 α é o fator da distribuição normal padronizada, Queiroz (2001) sugere a utilização de 1,65, pois representa um nível de confiança de 95%;

 $\sigma(TIR)$ é o risco do projeto, medido pelo desvio-padrão da TIR, caso exista anteriormente a aplicação da técnica de análise de cenário para a realização do projeto;

I é o investimento inicial.

O resultado do VAR pode ser maior ou menor que a capacidade de absorção de perda de capital da empresa. Dessa maneira, se o resultado VAR for menor, isso significa que o projeto apresenta uma viabilidade econômica financeira. Assim, consiste em que a realização de um projeto de investimento pode ser suportável sobre os principais aspectos econômicos. Todavia, se o resultado do VAR for maior que a capacidade financeira, este demonstra a não suportabilidade sobre os aspectos econômicos financeiros. Logo, a identificação do valor no risco em projeto de investimento ultrapassa a limitação das técnicas tradicionais por não fornecerem a perda máxima esperada no projeto de investimento (QUEIROZ, 2001).

O emprego do CAPM, APT e VAR na análise de projetos de investimento pode mensurar a relação entre o risco e o retorno. Desse modo, existe a relação entre a necessidade da mensuração do custo de capital, visto que um projeto de investimento pode ser financiado por capital próprio e de terceiros.

⁹ De acordo com Starec et al. (2005), a aplicação da técnica de análise de cenário permite ao analista explorar de forma mais abrangente as mudanças no ambiente de negócios em que se pode utilizar (a) um cenário normativo ou otimista; (b) um cenário livre de surpresas ou mais provável; e (c) um cenário adverso ou pessimista sobre as expectativas futuras para todos os projetos de investimentos.

2.3 Custo do capital pelo Custo Médio Ponderado de Capital (CMPC)

O Custo do capital pelo Custo Médio Ponderado de Capital (CMPC) é o custo resultante da média ponderada de financiamento entre capital próprio e de terceiro (SAMANEZ, 2002). Para isso, a Equação 8 apresenta essa média que é dada por:

$$CMPC = K_{cp} \left(\frac{CP}{V}\right) + K_d (1 - T) \left(\frac{D}{V}\right)$$
(8)

Em que:

CMPC é o custo médio ponderado de capital;

 K_{p} é o custo do capital próprio;

 K_d é o custo marginal da dívida ou taxa de juros paga sobre a divida adicional;

D é o valor da dívida;

e é valor de mercado do capital próprio;

V é a soma de \mathcal{C} + D, ou seja o valor da empresa;

T é a alíquota marginal do imposto de renda.

Um dos principais fatores para utilizar o método CMPC consiste na adequação das variáveis representando a totalidade da organização. Sendo assim, é necessário que contemplem o conjunto dessas variáveis para esse objeto de estudo, pois, caso contrário, não é possível realizar esse tipo de análise. Outro fator a ser considerado na composição do custo médio ponderado de capital é o custo líquido da dívida, devido à influência do efeito fiscal sobre a dívida. A Equação 9 apresenta a formulação para o seu cálculo.

$$CLD = K_D(1-T) \tag{9}$$

Em que:

CLD é o custo líquido da dívida;

 K_d é o custo marginal da dívida ou taxa de juros paga sobre a divida adicional;

T é a alíquota marginal do imposto de renda.

A incorporação do custo do capital para análises de investimentos em condições de risco de considerar a estimação do beta da empresa (SAMANEZ, 2002). Dessa maneira, o beta do seu ativo é uma média ponderada dos betas do capital próprio e da dívida, conforme exposto na Equação 10 ou pela Equação 11.

$$\beta_A = \beta(\frac{CP}{CP+D}) + \beta_d (1-T)(\frac{D}{CP+D}) \tag{10}$$

$$\beta_A = \beta_0 (1 - T \frac{D}{CP + D}) \tag{11}$$

Em que:

 β_A é o beta do ativo ou da empresa;

 $\beta_0\,$ é o beta que a empresa teria, se ela não tivesse dívida nenhuma, ou seja beta não-alavancado;

D é o valor da dívida;

e é valor de mercado do capital próprio;

T é a alíquota marginal do imposto de renda.

Ao igualar as Equações 10 e 11, pode-se destacar que o beta não-alavancado pode ser representando pela Equação 12.

$$\beta_0 = (\frac{\beta}{1 + (1 - T)\frac{D}{CP}}) \tag{12}$$

Isolando o parâmetro β e introduzindo os valores da nova alavancagem¹⁰ o beta ajustado (ou beta) pode ser apresentado por meio dessa nova Equação 13 (SAMANEZ, 2002).

$$\beta_a = \beta_0 (1 + (1 - T) \frac{D'}{CP'}) \tag{13}$$

Em que:

 β_a é o beta ajustado da organização;

 β_0 é o beta que a empresa teria se ela não tivesse dívida nenhuma, ou seja, beta não-alavancado;

T é a alíquota marginal do imposto de renda;

 $D'/{\it P}'$ é o índice de dívida por capital próprio da empresa, após a decisão de investir.

3 Estudo de Caso

O objeto deste estudo de caso é a implantação de um sistema de ERP¹¹, em uma empresa produtora de papel e celulose de eucalipto, visto que a estratégia da empresa consiste na reestruturação, integração de operações (pessoas, processos e tecnologia), com maior disponibilidade e qualidade nos dados e informações propiciando a descentralização das decisões na organização.

Entretanto, nesse contexto, a fim de simplificar a exposição das técnicas de análise de investimento em condições de risco, apenas as informações de aspectos financeiros são consideradas para a análise.

Inicialmente, são representados os fluxos de caixa previstos pelos gestores da organização após a implantação do ERP, mediante considerações de cenários econômicos futuros, ou seja, variações na receita segundo oscilações do preço do papel para aplicação das técnicas tradicionais e, posteriormente, das técnicas CAPM, APT e VAR.

A Tabela 1 apresenta o fluxo de caixa mais provável da organização com uma variação de 6% no fluxo de caixa líquido, mas a probabilidade de ocorrer essa variação consiste em 50%.

Tabela 1 - Representação do Fluxo de Caixa mais provável (50%)	Tabela 1	 Representação 	do Fluxo de	Caixa mais	provável (50%
---	----------	-----------------------------------	-------------	------------	------------	-----

Ano	Investimento Inicial	Benefícios	Custo Recorrente	Fluxo de Caixa Líquido
0	-4.500.000,00			-4.500.000,00
1		2.050.000,00	-135.000,00	1.915.000,00
2		2.050.000,00	-135.000,00	1.915.000,00
3		2.050.000,00	-135.000,00	1.915.000,00
4		2.050.000,00	-135.000,00	1.915.000,00
5		2.050.000,00	-135.000,00	1.915.000,00

Fonte: Adaptado de Schaicoski (2002).

A Tabela 2 apresenta o fluxo de caixa pessimista da organização com uma variação de 4,50% no fluxo de caixa líquido, mas a probabilidade de ocorrer essa variação consiste em 25%.

¹⁰ A nova alavancagem é constituída pelo valor de mercado da dívida dividido pelo montante do capital próprio resultante da aceitação do projeto de investimento.

¹¹ Segundo Starec (2005), a definição de ERP (Enterprise Resource Planning) é dada como um termo genérico que pretende identificar o conjunto de atividades executadas por um software modular e tem por objetivo primário, o auxílio dos processos de gestão de uma empresa nas mais importantes fases de seu negócio.

Tabela 2 - Representação do Fluxo de Caixa mais pessimista (25%)

Ano	Investimento Inicial	Benefícios	Custo Recorrente	Fluxo de Caixa Líquido
0	-4.500.000,00			-4.500.000,00
1		1.963.825,00	-135.000,00	1.828.825,00
2		1.963.825,00	-135.000,00	1.828.825,00
3		1.963.825,00	-135.000,00	1.828.825,00
4		1.963.825,00	-135.000,00	1.828.825,00
5		1.963.825,00	-135.000,00	1.828.825,00

Fonte: Adaptado de Schaicoski (2002).

A Tabela 3 apresenta o fluxo de caixa mais otimista da organização com uma variação de 6% no fluxo de caixa líquido, mas a probabilidade de ocorrer essa variação consiste em 25%.

Tabela 3 - Representação do Fluxo de Caixa mais otimista (25%)

Ano	Investimento Inicial	Benefícios	Custo Recorrente	Fluxo de Caixa Líquido
0	-4.500.000,00			-4.500.000,00
1		2.164.900,00	-135.000,00	2.029.900,00
2		2.164.900,00	-135.000,00	2.029.900,00
3		2.164.900,00	-135.000,00	2.029.900,00
4		2.164.900,00	-135.000,00	2.029.900,00
5		2.164.900,00	-135.000,00	2.029.900,00

Fonte: Adaptado de Schaicoski (2002).

A partir dos dados coletados, a aplicação dos métodos tradicionais no fluxo de caixa para o cenário mais provável resulta no valor da TIR de 31,89%, e o VPL é de R\$ 1.919.377,01. Nesse cálculo, os gestores consideraram uma taxa de 15% para a TMA.

Para utilizar o cálculo da TMA pelo método do CAPM, foi necessário considerar a participação de 70% de capital de terceiro antes da implementação do projeto e 75% depois da implementação do projeto, e a consideração do imposto de renda sendo representado pelo percentual de 30%. Desse modo, para aplicar o método CAPM, é necessário estimar os seguintes parâmetros:

• Beta do investimento: para estimar esse parâmetro foi necessário considerar os prováveis retornos do investimento e o retorno de mercado sendo representado pelo índice IBOVESPA. Para o caso analisado, utilizaram-se os dados referentes ao ano de 2005. Além disso, a Tabela 4 apresenta os índices referentes à expansão esperada, Estabilidade Esperada e Retração Esperada. Para tanto, foram utilizandos os dados da IBOVESPA, os quais correlacionam os meses e os índices referentes do ano.

Tabela 4 - Rentabilidade IBOVESPA

MÊS	IBOVESPA
Janeiro	-7,04
Fevereiro	15,55
Março	-5,43
Abril	-6,64
Maio	1,46
Junho	-0,61
Julho	3,95
Agosto	7,68
Setembro	12,61
Outubro	-4,40
Novembro	5,70
Dezembro	4,82
Expansão Esperada ¹² (25%)	7,40
Estabilidade Esperada (50%)	2,30
Retração Esperada (25%)	-4,82

Fonte: Adaptado de Queiroz (2001)

A Tabela 5 apresenta o cálculo do retorno médio de mercado, o desvio padrão e a variância para todas as possibilidades de cenário referentes à rentabilidade do Índice IBOVESPA.

Tabela 5 - Cálculo do Retorno Médio de Mercado

Possibilidade	Retorno	Prob.	Ret. Médio	(RetRet Médio) ²	Dêsv. Padrão	Variância
Expansão	7,40	25%		31,37		
Estabilidade	2,30	50%	1,80	0,26	4,3502	18,9244
Retração	-4,82	25%		43,81		

Fonte: Pesquisa direta

A Tabela 6 apresenta o cálculo do retorno médio do investimento e o desvio padrão para todas as possibilidades de cenário referentes à rentabilidade do investimento a ser realizado pela organização.

Tabela 6 - Cálculo do Retorno Médio do Investimento

Possib.	Investimento Inicial	Fluxo de Caixa	TIR	Prob.	TIR. Média	(TIRTIR Média) ²	Dêsv. Padrão
Expansão	-4.500.000,00	1.828.825,00	29,47	25%		0,06839	
Estabilidade	-4.500.000,00	1.915.000,00	31,89	50%	32,08	0,00036	1,99
Retração	-4.500.000,00	2.029.900,00	35,08	25%		0,08968	

Fonte: Pesquisa direta

A Tabela 7 sistematiza os valores necessários para encontrar o valor da covariância entre o etorno do investimento e o retorno de mercado. Esse cálculo foi realizado para todos os cenários de probabilidade de ocorrência.

Segundo Queiroz (2001), o percentual da expansão esperada é calculado mediante a média dos valores positivos, a estabilidade é calculada pela média de todos os dados, e a retração pela média dos valores negativos.

Tabela 7 - Covariância entre Retorno do Investimento e Retorno de Mercado

Probabilidade	(TIR – TIR Média)	(Ret – Ret Médio)	Covariância
25%	-2,6151	5,6007	
50%	-0,1898	0,5092	-8,6654
25%	2,9947	-6,6190	

Fonte: Pesquisa direta

Com base nos resultados obtidos, o beta investimento foi calculado por meio da Equação 4 para estimar o beta nãoalavançado.

$$\beta = \frac{Cov(R, R_m)}{\sigma^2(R_m)}$$
$$\beta = \frac{-8,6654}{18,9244}$$
$$\beta = -0.46$$

Beta não-alavancado: para estimar esse parâmetro, foi necessário considerar o beta do investimento, o
percentual de capital próprio, o percentual de capital de terceiro e a taxa de tributação do imposto de renda.
Dessa maneira, utilizou-se a Equação 12 para encontrar o valor do beta não-alavancado.

$$\beta_0 = (\frac{\beta}{1 + (1 - T)\frac{D}{CP}})$$

$$\beta_0 = (\frac{-0.46}{1 + (1 - 0.30) \times \frac{0.70}{0.30}})$$

$$\beta_0 = (\frac{-0.46}{1 + (0.70) \times 2.33}) \to (\frac{-0.46}{2.63}) \to -0.17$$

• Beta ajustado: para estimar esse parâmetro, foi necessário considerar o beta do investimento e o beta nãoalavancado, conforme a Equação 13.

$$\beta_a = \beta_0 (1 + (1 - T) \frac{D'}{CP'})$$

$$\beta_a = -0.17 \times (1 + (1 - 0.30) \times \frac{0.75}{0.25})$$

$$\beta_a = -0.17 \times (1 + (0.70 \times 3.00))$$

$$\beta_a = -0.17 \times (1 + 2.10)$$

$$\beta_a = -0.17 \times 3.10$$

$$\beta_a = -0.54$$

A partir dos resultados obtidos, foi possível calcular a TMA considerando os parâmetros da taxa média SELIC, o beta ajustado do IBOVESPA com o retorno do investimento e o retorno médio de mercado (IBOVESPA). A taxa média

SELIC adotada foi no valor de 18% e cotada em dezembro de 2005, conforme a base de dados disponibilizada pelo site do IPEADATA. A Equação 5 apresenta o cálculo da TMA em que foram considerados todos os parâmetros referenciados acima.

$$TMA = R_f + \beta (R_m - R_f)$$

 $TMA = 18 + -0.54 \times (1.80 - 18)$
 $TMA = 18 + -0.54 \times (-16.20)$
 $TMA = 18 + 8.77$
 $TMA = 26.77$

A proposta inicial da avaliação do investimento deve considerar outra fonte causadora de risco, como a inflação. O critério de seleção da fonte foi respaldado por Queiroz (2001). Assim, a Tabela 8 apresenta os índices da inflação mensurados por meio do IGP-DI em que foram correlacionados com cada mês do ano de 2005, conforme a base disponibilizada pela IPEADATA. Para isso, é essencial o cálculo da expansão esperada, considerando uma probabilidade de 25%; da estabilidade considerando a probabilidade de 50% e da retração esperada para a inflação, considerando a probabilidade de 25%, conforme ilustra pela Tabela 8.

Tabela 8 - Inflação pelo IGP-DI

MÊS	Inflação IGP-DI
Janeiro	0,33
Fevereiro	0,40
Março	0,99
Abril	0,51
Maio	-0,25
Junho	-0,45
Julho	-0,4
Agosto	-0,79
Setembro	-0,13
Outubro	0,63
Novembro	0,33
Dezembro	0,07
Expansão Esperada	0,47
Estabilidade Esperada	0,10
Retração Esperada	-0,40

Fonte: Pesquisa direta

A Tabela 9 apresenta o cálculo do índice médio da inflação, o desvio padrão e a variância para todas as possibilidades de cenário referente ao índice de inflação.

Tabela 9 - Cálculo da Inflação Média

Possibilidade	Retorno	Prob.	Ret. Médio	(RetRet Médio) ²	Dêsv. Padrão	Variância
Expansão	0,47	25%		1,77		
Estabilidade	0,10	50%	0,07	2,86	1,7554	3,0816
Retração	-0,40	25%		4,84		

Fonte: Pesquisa direta

A Tabela 10 sistematiza os valores necessários para encontrar o valor da covariância entre o retorno do investimento e a inflação. Esse cálculo foi realizado para todos os cenários de probabilidade de ocorrência.

Tabela 10 - Covariância entre Retorno do Investimento e Int
--

Probabilidade	(TIR – TIR Média)	(Infla – Infla Média)	Covariância
25%	-2,6151	0,3986	
50%	-0,1898	0,0362	-0,6167
25%	2,9947	-0,4711	

Fonte: Pesquisa direta

Com base nos resultados obtidos, é necessário calcular os seguintes parâmetros o beta do investimento, o beta nãoalavancado e o beta ajustado:

• Beta do investimento: para estimar esse parâmetro, foi necessário considerar os prováveis retornos do investimento e a inflação sendo representados pelo índice IGP-DI.

$$\beta = \frac{Cov(R, Infla_m)}{\sigma^2(Infla_m)}$$
$$\beta = \frac{-0.6167}{3.0816}$$
$$\beta = -0.20$$

• Beta não-alavancado: para estimar esse parâmetro, foi necessário considerar o beta do investimento, o percentual de capital próprio, o percentual de capital de terceiro e a taxa de tributação do imposto de renda. Utilizou-se a Equação 12 para encontrar o valor do beta não-alavancado.

$$\beta_0 = (\frac{\beta}{1 + (1 - T)\frac{D}{CP}})$$

$$\beta_0 = (\frac{-0.20}{1 + (1 - 0.30) \times \frac{0.70}{0.30}})$$

$$\beta_0 = (\frac{-0.20}{1 + 0.70 \times 2.33}) \to (\frac{-0.20}{2.63}) \to -0.08$$

Beta ajustado: para estimar esse parâmetro, foi necessário considerar o beta do investimento e o beta não-alavancado, conforme a Equação 13.

$$\beta_a = \beta_0 (1 + (1 - T) \frac{D'}{CP'})$$

$$\beta_a = -0.08 \times (1 + (1 - 0.30) \times \frac{0.75}{0.25})$$

$$\beta_a = -0.08 \times (1 + (0.70 \times 3.00))$$

$$\beta_a = -0.08 \times (1 + 2.10)$$

$$\beta_a = -0.08 \times 3.10$$

$$\beta_a = -0.25$$

A partir dos resultados obtidos, foi possível calcular a TMA por meio do método do APT, que considerou os parâmetros da taxa média SELIC, o beta ajustado do IBOVESPA com o retorno do investimento, o retorno médio de mercado (IBOVESPA), o beta ajustado da inflação com o retorno do investimento e a inflação média. Assim, a TMA é estimada por meio da Equação 6, que considera os dados acima.

$$TMA = R_f + \beta(R_m - R_f) + \beta_k(R_m - R_f) + \beta_k(R_m - R_f) + \dots + \beta_k(R_m - R_f)$$

$$TMA = 18 + -0.54 \times (1.80 - 18) + -0.25 \times (0.07 - 18)$$

$$TMA = 18 + 8.75 + 4.48$$

$$TMA = 31.23$$

Na esteira desse processo, a proposta inicial se faz indispensável à avaliação da perda máxima esperada no projeto, mediante o uso do método VAR (*Value At Risk*). Para isso, é necessário definir o valor da suportabilidade econômica do projeto de investimento, cujo estudo de caso foi definido como 3,50% referente ao investimento inicial, ou seja, o valor de R\$157.500,00. A Equação 7 apresenta a estimação referente ao VAR.

$$VAR = \alpha \sigma(TIR)I$$

 $VAR = 1,65 \times 0,0199 \times 4.500.000,00$
 $VAR = 147.757.50$

Para sistematizar os resultados obtidos dessas avaliações, a Tabela 11 apresenta os resultados das aplicações referentes aos métodos CAPM, APT e VAR.

Tabela 11 - A sistematização dos resultados por meio dos métodos de avaliação.

Métodos	Resultados	Comentários
CAPM	TMA _{CAPM} < TIR MÉDIA	Viável economicamente
APT	TMA _{APT} < TIR MÉDIA	Viável economicamente
VAR	VAR< suportabilidade econômica do projeto de investimento	Viável economicamente

Fonte: Pesquisa direta

Reflexões finais

Atualmente, as organizações buscam por técnicas que auxiliem nas tomadas de decisões para os investimentos em condições de risco, visto que as técnicas tradicionais manifestam algumas limitações nos procedimentos de avaliação do mesmo. Essas limitações significam não fornecer a perda máxima esperada no projeto, bem como contemplar a mesma taxa mínima de atratividade para a organização como um todo. Essas limitações foram focos de estudo contemplados neste artigo.

Nesse encadeamento de idéia, o principal objetivo deste artigo foi aplicar o modelo de precificação de ativos de capital (CAPM), o modelo de precificação por arbitragem (APT) e o valor no risco (VAR), na exclusão de tais limitações. As exclusões de todas as limitações foram alcançadas mediante as aplicações dos métodos: CAPM, APT, e VAR.

Na esteira desse processo, tais exclusões admitem concluir que o principal objetivo desejado foi atingido. Assim, realizou-se um estudo de caso na implantação de um sistema ERP em uma empresa produtora de papel para corroborar as taxionomias da literatura de investimento

Com base nos resultados obtidos neste trabalho, os métodos de avaliação econômica de projetos de investimento em condição de risco auxiliaram bastante à organização identificar a real relação entre risco e retorno e adotar melhores decisões.

Além disso, o propósito deste artigo ainda despertou o interesse para realizar futuras pesquisas, em outras empresas, que possa utilizar o mesmo procedimento de avaliação.

Para isso, pode-se considerar aplicação dos modelos por meio de redes neurais artificiais na dinâmica temporal de cada série histórica, bem como a utilização de uma abordagem probabilística sobre o valor presente líquido. Vale ressaltar que outro tipo de pesquisa recomendado é incrementar o método do cálculo do ponto morto.

Referências

BALARINE, O. A utilização de técnicas de engenharia econômica para posicionamentos estratégicos em negócios da construção. In: ENCONTRO DE ESTUDOS EM ESTRATÉGIA, 1, 2003, Curitiba. *Anais...* Curitiba: ANPAD, 2003.

BODIE, Z.; KANE, A.; MARCUS, A. J. Fundamentos de investimentos. 3. ed. Porto Alegre: Bookman., 2000.

BRUNI, A. L.; FAMÁ, R. *Gestão de custos e formação de preços*: com aplicações na calculadora hp 12c e excel. 3. ed. São Paulo: Atlas, 2004.

FAMÁ, R.; CARDOSO, R. L.; MENDOÇA, O. Riscos financeiros e não financeiros: uma proposta de modelo para finanças. *Faceca*, Campinas, SP, v. 11, n. 1, p. 33-50, jan./jun. 2002.

FIGUEIREDO NETO, L. F.; MANFRINATO, J. W. S.; CREPALDI, A. F. Teoria das opções reais: de que está se falando? In: SIMPÓSIO NACIONAL DE ENGENHARIA DE PRODUÇÃO, 10., 2003, Bauru. *Anais...* Bauru: UNESP/SIMPEP, 2003.

FONSECA, Y. D.; BRUNI, A. L. Técnicas de avaliação de investimentos: uma breve revisão da literatura. *Cadernos de Análise Regional*, São Paulo, v. 1, p. 40-54, 2003.

GITMAN, L. J. Princípios de administração financeira. 10. ed. São Paulo: Prentice- Hall, 2004.

HAMADA, R. The effect of the firm's capital structure on the systematic risk of commom stocks. *Journal of Finance*, New York, p. 435-452, 1972.

HIRSCHFELD, H. Engenharia econômica e análise de custos. 7. ed. São Paulo: Atlas, 2000.

KASSAI, J. R. et al. *Retorno de investimento*: abordagem matemática e contábil do lucro empresarial. 2. ed. São Paulo: Atlas, 2000.

MEIRELLES, J. L. F. *A teoria de opções reais como instrumento de avaliação de projetos de investimento*. 2004. 117 f. Dissertação (Mestrado em Engenharia de Produção)-Escola de Engenharia de São Carlos, Universidade de São Carlos, São Paulo, 2004.

MIRANDA, V. A. M.; PAMPLONA, E. O. Um estudo do modelo arbitrage pricing theory (apt) aplicado na determinação da taxa de descontos. In: ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO, 27., 1997, Gramado, RS. *Anais...* Gramado, RS: UFRGS/ABEPRO, 1997.

OLIVEIRA, A. M. G. *Uma pesquisa exploratória sobre a utilização de técnicas financeiras pelas micro e pequenas indústrias do setor eletroeletrônico do vale da eletrônica*. 2003. 168 f. Dissertação (Mestrado em Engenharia de Produção)-Universidade Federal de Itajubá, Itajubá, 2003.

QUEIROZ, J. A. Aplicação do valor no risco (VAR), do modelo de precificação dos ativos de capitais (CAPM) e da teoria de precificação por arbitragem (APT) na avaliação econômica dos projetos de investimento em condições de risco. 2001. Dissertação (Mestrado em Engenharia de Produção Mecânica)-Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2001.

REBELATTO, D. Projeto de investimento. São Paulo: Manole, 2004.

RIBEIRO, C. O.; FERREIRA, L. A. S. Uma contribuição ao problema de composição de carteiras de mínimo valor em risco. *Gestão e Produção*, São Carlos, v. 2, n. 2, p. 295-305, 2005.

SAMANEZ, C. P. *Matemática financeira*: aplicações à análise de investimentos. 3. ed. São Paulo: Prentice Hall, 2002.

SCHAICOKI, J. C. *A utilização do ROI na análise de projetos da tecnologia da informação*. 2002. 113 f. Dissertação (Mestrado em Engenharia de Produção)-Universidade Federal de Santa Catarina, Santa Catarina, 2002.

SECURATO, J. R. Avaliação do risco da empresa: um estudo introdutório. *Administração em Diálogo Programa de Estudos Pós Graduados em Administração PUC*, São Paulo, v. 4, p. 103-118, 2002.

SECURATO, J. R. Decisões financeiras em condições de risco. São Paulo: Atlas, 1996.

SHARPE, W. F. Capital asset prices: a theory of market equilibrium under conditions of risk. *Journal of Finance*, New York, v. 19, p. 425-442, 1964.

SOUZA, L. A. R. *Metodologia do cálculo do VaR*. Disponível em: http://www.risktech.com.br/Artigos/ArtigosTecnicos.asp. Acesso: 1 jun. 2006.

STAREC, C.; GOMES, E.; BEZERRA, J. (Org.). Gestão estratégica da informação e inteligência competitiva. São Paulo: Saraiva, 2005.

Recebido: 08/10/2006 **Aprovado:** 24/10/2007